首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Large scale metallic Zn microspheres and hollow ZnO microspheres are synthesized by thermal evaporation and vapor transport by heating a ZnO/graphite mixture at 1000 °C. Firstly, metallic Zn microspheres are fabricated with diameters in the range of 1–10 μm. The Zn microspheres are then annealed at 600 °C in air, which form hollow semiconducting ZnO microspheres. EDX and XRD spectra reveal that the oxidized material is indeed ZnO. Room temperature photoluminescence spectra of the oxidized material show a sharp peak at 380 nm and a wider broad peak centered at 490 nm. This growth mechanism is discussed and further investigated for other metallic and metal oxide microstructures.  相似文献   

2.
Large scale densely packed and vertically oriented ZnO nanorod arrays were grown on F-doped SnO2 (FTO) substrates through a simple hydrothermal synthesis route. Based on the arrays of hexagonal ZnO nanorod with size of 60100 nm in diameter, and 1.5 μm in length, a prototypical photoelectrical device was fabricated for ultraviolet detection, showing good reproducibility and a large photocurrent of around 6.71 mA at the applied voltage of 0.4 V. The large photocurrent and the ohmic IV characteristics of the ZnO nanorods under the illumination could be ascribed to the decrease of the barrier height among the ZnO nanorods and the Schottky barrier between the nanorods and the Au electrodes and, in particular, to the accumulation of conduction electrons, resulted from the neutralization between photogenerated holes and negatively charged oxygen ions. The photoresponse curve is well fitted to an exponential curve with the relaxation time constant of 9 s in rising edge and 90 s in decaying one, representing the accumulation of conduction electrons. These well-aligned ZnO nanostructures of high quality could be easily fabricated by a cost-effective chemical route and used for constructing nanoscale devices with excellent performances.  相似文献   

3.
Using amino-acid histidine as chelating agent, CdS nanoparticles have been synthesized by sonochemical method. It is found that by varying the ultrasonic irradiation time, we can tune the band gap and particle size of CdS nanoparticles. The imidazole ring of histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. The deviation in the linear relation in between cube of radius of nanoparticles and ultrasonic irradiation time confirms the growth of CdS nanoparticles occur via two process; one is the diffusion process of the reactants as well as reaction at the surface of the crystallite. CdS nanoparticles synthesized using histidine as organic chelating agent have band edge emission at 481 nm and have greater photoluminescence intensity with blue-shift to higher energy due to typical quantum confinement effect.  相似文献   

4.
A simple sol–gel precipitation technique to synthesize nano hydroxyapatite (HA) particles (30 nm) that show similar morphology, size and crystallinity to HA crystals of human teeth is reported. Calcium nitrate tetrahydrate and potassium dihydrogenphosphate were used as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH to 11. After aging, the HA gel was dried at 40 °C and calcined to different temperatures ranging from 200 to 600 °C. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry, and Fourier transform infra-red spectroscopy. The particle size and morphology was studied using Transmission electron microscopy. The particle size distribution analysis of HA powders showed skewed distribution plot. The phase and particle characterization studied above showed that HA calcined at 600 °C simulate HA crystals of teeth.  相似文献   

5.
Nanocrystalline Mg–Zn-ferrite is prepared by ball milling the stoichiometric powder mixture of MgO, ZnO and α-Fe2O3. A non-stoichiometric ferrite phase is noticed to form after 3 h of milling when particles of starting materials became nano-sized. After 25 h of milling, stoichiometric ferrite phase is formed with 9 nm particle size. Post annealing study of ball-milled sample reveals that the nanocrystalline ferrite phase is stable up to 873 K and then starts to decompose into individual starting phases. However, heat treatment of unmilled stoichiometric powder mixture even at 1473 K for 1 h duration does not result in formation of stoichiometric Mg–Zn-ferrite phase.  相似文献   

6.
An experimental investigation on the combustion behavior of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates of quasi-homogeneous mixtures of nAl and liquid water as a function of pressure, mixture composition, particle size, and oxide layer thickness were measured. This study is the first reported self-deflagration on nAl and liquid water without the use of any additional gelling agent. Steady-state burning rates were obtained at room temperature (25 °C) using a windowed vessel for a pressure range of 0.1–4.2 MPa in an argon atmosphere, particle diameters of 38–130 nm, and overall mixture equivalence ratios () from 0.5 to 1.25. At the highest pressure studied, the linear burning rate was found to be 8.6 ± 0.4 cm/s, corresponding to a mass-burning rate per unit area of 6.1 g/cm2 s. The pressure exponent at room temperature was 0.47, which was independent of the overall mixture equivalence ratio for all of the cases considered. The mass-burning rate per unit area increased from 1.0 to 5.8 g/cm2 s for an equivalence ratio range of 0.5–1.25. It varied inversely to particle diameter, increasing by 157% when the particle diameter was decreased from 130 to 50 nm at  = 1.0.  相似文献   

7.
Ultra thin ZnO films were prepared on metal Mo(1 1 0) substrate under ultrahigh vacuum conditions either by depositing Zn in 10−5 Pa oxygen or by oxidizing pre-deposited Zn films. The films were characterized in situ by various surface analytical techniques, including Auger electron spectroscopy, X-ray and ultraviolet photoelectron spectroscopies, low energy electron diffraction and high resolution electron energy loss spectroscopy. The results indicate that a long-range ordered and stoichiometric ZnO films are formed along its [0 0 0 1] direction. The annealing experiments show that as-prepared ZnO films are thermal stable until 800 K. This study provides constructive information to further understand the growth mechanism of ZnO films on different substrates.  相似文献   

8.
We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe2 (CIGS), ZnO, SnO2, Mo, Al, and Au. The lasers included four different neodymium–yttrium–aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from 0.1 to 250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.  相似文献   

9.
Phosphorus-doped ZnO films were grown by pulsed laser deposition using a ZnO:P2O5-doped target as the phosphorus source with the aim of producing p-type ZnO material. ZnO:P layers (with phosphorus concentrations of between 0.01 to 1 wt%) were grown on a pure ZnO buffer layer. The electrical properties of the films were characterised from temperature dependent Hall-effect measurements. The samples typically showed weak n-type conduction in the dark, with a resistivity of 70 Ω cm, a Hall mobility of μn0.5 cm2 V −1 s−1 and a carrier concentration of n3×1017 cm−3 at room temperature. After exposure to an incandescent light source, the samples underwent a change in conduction from n- to p-type, with an increase in mobility and decrease in concentration for temperatures below 300 K.  相似文献   

10.
Citrate-stabilized CdS nanoparticles of size 4 nm are obtained by varying the sulfide:citrate ion concentration in a simple aqueous synthesis method. The optical absorption and photoluminescence properties of the nanoparticles are studied. The size of the crystallites is found to be less affected by sulfide:citrate ratio. At lower concentrations of S2−, trap state emission is favoured and at higher concentrations excitonic transition is predominant as shown by optical absorption and photoluminescence spectra. Effective surface capping and optimum concentration of S2− leads to the quenching of surface-defect-related emission. Increase in citrate ion concentration is found to increase the intensity of photoluminescence band arising from trap state emission revealing the role of sulfide:citrate ratio on surface modification of CdS nanocrystals. The nanoparticles are hexagonal as shown by the X-ray diffraction and selected area electron diffraction pattern.  相似文献   

11.
β-Tricalcium phosphate (β-TCP) nano powders (80 nm) were synthesized using a simple sol–gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for β-TCP sol preparation and ammonia was used to adjust the pH. After aging, the β-TCP gel was dried at 40 °C and calcined to different temperatures ranging from 200 to 800 °C. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform-infrared spectroscopy (FT-IR). The particle size and morphology was studied using Transmission electron microscopy (TEM). Calcination revealed that with increase in temperature, both the crystallinity and crystallite size of β-TCP particles increased. Particle size distribution analysis of the calcined β-TCP at 800 °C showed a narrow skewed distribution plot centered between 70 and 80 nm. This value was in closed agreement with particle size values obtained from XRD analysis (83 ± 6 nm). The present study showed that narrowly distributed, high crystalline, pure β-TCP could be obtained using this simple technique for biomedical applications.  相似文献   

12.
Triangle-like ZnO nanosheets have been synthesized via conventional thermal evaporation method at a low temperature of 550 °C using CuO as catalyst. The obtained samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectra. The great influences of Cu catalyst on the morphology of the obtained ZnO nanostructures were investigated. The field emission measurements confirmed that the ZnO nanosheets possessed good performance with a turn-on field of 3.1 V μm−1 and a field enhancement factor of 3250, which have promising application as a competitive cathode material in FE microelectronic devices. Room temperatures ferromagnetism has been observed in the triangle-like ZnO nanosheets, although the products consist of only nonmagnetic elements.  相似文献   

13.
Flat, pre mixed, laminar, and very O2-rich flames of C2H2 + O2 + N2 with [O2]/[O2]stoich  2.8 and a temperature 2000 K have been burned at atmospheric pressure. Trace amounts (13 ppm) of the metals Mg, Ba or A1 were added to the unburnt gases by nebulising an aqueous solution of a halide of the metal, so that e.g., Mg formed molecules of Mg(OH)2, MgOH and MgO, as well as free atoms of Mg. The relative abundances of these species were governed by well-characterised equilibria and consequently depended on the temperature and also the concentrations of the flame’s free radicals H, OH and O. Transmission electron microscopy showed that nanoparticles of the oxides of these metals formed from their pool of molecular species in these flames. Particle size distributions were also measured (much less tediously) with a mobility analyser (DMS 500, Cambustion) operating at 0.25 bara. The optimal way of continuously sampling the gases at a point along the flame’s axis was investigated and shown to require expanding the sample (to a pressure of 1/3 bara) supersonically through an orifice with a diameter greater than 0.4 mm. In addition, the sample had to be diluted with N2, with a volumetric flow rate of 10–20 times that of the sample, all at 1/3 bara. The sizes of oxide nanoparticles, as measured by transmission electron microscopy, agreed with the values of 6–10 nm from the mobility analyser. With Mg all the metal appeared very rapidly as nearly spherical nanoparticles of MgO early in a flame’s reaction zone. This was also true for Ba, which, according to thermodynamic considerations at the final temperature of the flame, should not form any particles of BaO. That particles do actually form is due to the reaction zone having a relatively low temperature and super-equilibrium concentrations of the free radicals H, OH and O. Aluminium was expected to form particles of A12O3. However, only a small fraction of the Al formed particles; this is attributed to the production of gas-phase molecules of Al2O3 (i.e., the nuclei) from AlO and AlO2 being by a relatively slow three-body reaction, as well as Al2O3 being a very minor member of the gas-phase pool of molecular species containing Al.  相似文献   

14.
In this paper, ZnO films grown by metalorganic vapour phase epitaxy on various substrates (GaAs, silicon, sapphire) and using different VI /II ratios, are investigated by photoluminescence (PL) spectroscopy. The PL spectra of layers grown on GaAs show significant recombination at 3.320 eV, 3.305 eV and 3.270 eV. These energies are remarkably similar to what have been reported for hybrid beam deposited ZnO:As [Y.R. Ryu, T.S. Lee, H.W. White, Appl. Phys. Lett. 83 (2003) 87] and arsenic-implanted ZnO crystals [T.S. Jeong, M.S. Han, C.J. Youn, Y.S. Park, J. Appl. Phys. 96 (2004) 175], and the lines are ascribed to the incorporation of arsenic, which diffuses from the substrate into the films. Two acceptor levels are deduced at 120 meV and at 140–150 meV.  相似文献   

15.
Catalyst-free synthesis and luminescence of aligned ZnO nanorods   总被引:1,自引:0,他引:1  
Quasi-aligned undoped ZnO nanorods with diameter in the range 100–300 nm and length of several micrometers have been grown catalyst-free on Si(1 0 0) wafer in a one-step process by direct heating of Zn powders. All nanowires are single crystals and are aligned vertically to the substrate surface with c-axis preferred orientation. XRD, HRTEM and Raman studies revealed that the ZnO nanorods have wurtzite phase, are highly crystalline and well aligned with the lattice parameters a=0.32 nm and c=0.52 nm. The PL spectra measured at different temperatures are dominated by excitonic emission at 380 nm and less intense below band gap emission band centered at 520 nm.  相似文献   

16.
This paper addresses the issue related to morphology of CdSe nanoparticles capped with organic molecules. Semiconducting CdSe nanoparticles of 5–16 nm are synthesized using CdO precursor, capped with trioctyl phosphine (TOP)/trioctyl phosphine oxide (TOPO) using different starting precursor ratios of Cd:Se. At an optimum ratio of Cd/Se-2:1, highly luminescent and small sized (5 nm) nanoparticles are obtained. At other Cd/Se precursor ratios (0.5:1, 1:1, 3:1) larger particles are formed with varying photoluminescence (PL) intensity and optical absorption (UV–VIS). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used to determine the crystallinity and stoichiometry of the system, respectively. It is shown that the blue shifts of the optical absorption edge concurrent with the CdSe nanocrystal size reduction, for sizes measured by XRD with respect to the bulk semiconductor, agree perfectly with the strong quantum confinement model. The optical edge shifts are significantly higher for CdSe nanocrystallite as measured by transmission electron microscopy (TEM) than the theoretical prediction based on the strong quantum confinement model. This is understood on the basis of agglomeration effects as observed by TEM for CdSe nanocrystallites. The nano-sized CdSe growth island thus formed comprises of several TOP/TOPO passivated nanocrystals.  相似文献   

17.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

18.
Measurements of the oxidation of a coal char in a fluidised bed have the advantages that the rates of heat and mass transfer to and from a reacting particle are large and characterised well. However, problems have arisen from a combination of the slow, but typical, response–time (4 s) of the analysers for CO and CO2 and the slow mixing of gases when filling a fairly large fluidised bed. The resulting time constant for the sampling system was 8 s and comparable to the time for combustion at 900 °C or above. The purpose of this work was to measure the kinetics of oxidation of a char in a smaller fluidised bed (with a shorter mixing time) using an analyser for CO and CO2 with a response time as low as 0.1 s. The result is that the oxidation of an anthracitic char is now found to be first order in O2 between 700 and 900 °C; at 900 °C the order previously measured was almost zero. The activation energy is now measured here to be 145 ± 25 kJ/mol, in agreement with some early work.  相似文献   

19.
We have studied temperature dependent photoluminescence (PL) from ZnO Multiple Quantum Wells (MQWs) of different well layer thicknesses in the range 1–4 nm grown on (0001) sapphire by a novel in-house developed buffer assisted pulsed laser deposition. At 10 K the PL peak shifted toward blue with decreasing well layer thickness and at constant well layer thickness the PL peak shifted towards red with increasing temperature. To the best of our knowledge we have observed for the first time an efficient room temperature (RT) PL emanating from such MQWs. The red shift of the PL peak with increasing temperature has been found to be due to the band gap shrinkage in accordance with the Varshni’s empirical relation. The spectral linewidth was found to increase with increasing temperature due to the scattering of excitons with acoustic and optical phonons in different temperature regimes. Both at RT and at 10 K the PL peak shifted with respect to the well layer thickness in the range of 3.35–3.68 eV with decreasing thickness in agreement with the calculated values.  相似文献   

20.
Single crystal ZnO nanowires diffused with europium (Eu) from a solid source at 900 °C for 1 h or doped with Eu during growth have been characterized. The ZnO nanowires were grown by chemical vapor deposition on Si substrates employing Au as a catalyst. The diameter of the resulting nanowires was 200 nm with a length of 1 μm. Photoluminescence spectra excited by a He–Cd laser at room temperature showed the green luminescence at 515 nm in Eu-diffused nanowires. A small red shift of near-band-edge emission of ZnO nanowires was observed in the diffused wires, but sharp emission from Eu3 ions was not present. Transmission electron microscopy shows crystalline Eu2O3 formation on the diffused nanowire surface, which forms a coaxial heterostructure system. When Eu was incorporated during the nanowire growth, the sharp 5DO7F2 transition of the Eu3+ ion at around 615 nm was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号