首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.  相似文献   

2.
The joint state of a system that is in contact with an environment is called lazy, if the entropy rate of the system under any coupling to the environment is zero. Necessary and sufficient conditions have recently been established for a state to be lazy [Phys. Rev. Lett. 106, 050403 (2011)], and it was shown that almost all states of the system and the environment do not have this property [Phys. Rev. A 81, 052318 (2010)]. At first glance, this may lead us to believe that low entropy rates themselves form an exception, in the sense that most states are far from being lazy and have high entropy rates. Here, we show that in fact the opposite is true if the environment is sufficiently large. Almost all states of the system and the environment are pretty lazy-their entropy rates are low for any coupling to the environment.  相似文献   

3.
Using the expression of the fidelity for the most general Gaussian quantum states, the behaviour of the quantum fidelity is described for the states of a harmonic oscillator interacting with an environment, in particular with a thermal bath. By taking a correlated squeezed Gaussian state as initial state, we calculate the quantum fidelity for both kinds of undisplaced and displaced states, and for different values of the squeezing and correlation parameters and of the environment temperature.  相似文献   

4.
Purity as a quantifier of an impact of environment on an open quantum system is studied for a qubit dephasingly interacting with its environment. We analyze how time evolution of the purity depends on initial states of the composite system both in the case of infinite and finite environments. It is shown that for a certain class of initial preparations, the purity of an evolving qubit state initially correlated with infinite environment can be greater than in the case of uncorrelated qubit-environment initial preparations. We identify a class of initial states leading to such desired outcome.  相似文献   

5.
Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given.  相似文献   

6.
We address entanglement transfer from a three-mode bosonic system to a tripartite systems of spatially separated flying or fixed qubits through the interaction with their local environments. We focus on the robustness of entanglement transfer against several effects, including off-resonant interactions for both qubit-local environment and local environment-bosonic mode subsystems, and also exploring the effect of changing the coupling constants, with the possibility to have different values for each qubit-local environment interaction. For the entangled bosonic modes we consider both Gaussian states and qubit-like states, comparing three different Generalized Schmidt Decompositions forms widely used in the literature and analyzing how the deviation from qubit-like approximation influences entanglement transfer. Finally, we investigate the multimode coupling between bosonic modes and each local environment showing a comparison between various qubit-like initial states and discussing how to improve the efficiency of entanglement transfer.  相似文献   

7.
We investigate the entanglement dynamics in a bipartite atomic system subjected to thermal environment with arbitrary initial pure entangled states. We consider the atoms close together and study the effect of temperature of the reservoir and the interatomic distance on the evolution of entanglement for both initially entangled and unentangled states. We find that we can have long time entanglement even in thermal environment.  相似文献   

8.
张登玉  谢利军  唐世清  詹孝贵  陈银花  高峰 《中国物理 B》2010,19(10):100305-100305
We demonstrate that multipartite Bell-inequalities violations can be fully destroyed in finite time in three-qubit states under a quantum-critical environment, which is an Ising model in a transverse field. We use the Mermin--Ardehali--Belinksii--Klyshko (MABK) inequality to detect the degree of nonlocality as measured by the extent of their violations. The effects of system-environment couplings, the size of degrees of freedom of environment and the strength of transverse field on the Bell-inequality violations are given for two different initial states, namely, the W class and GHZ class states. The results indicate that the Bell-inequality violations of the tripartite states will be completely destroyed by the decoherence under certain conditions.  相似文献   

9.
We find the necessary and sufficient conditions for the entropy rate of the system to be zero under any system-environment Hamiltonian interaction. We call the class of system-environment states that satisfy this condition lazy states. They are a generalization of classically correlated states defined by quantum discord, but based on projective measurements of any rank. The concept of lazy states permits the construction of a protocol for detecting global quantum correlations using only local dynamical information. We show how quantum correlations to the environment provide bounds to the entropy rate, and how to estimate dissipation rates for general non-Markovian open quantum systems.  相似文献   

10.
The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structure of quantum states, but also on the exchange couplings with environment. The decoherence-free subspaces have been identified by using the linear entropy.  相似文献   

11.
The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structure of quantum states, but also on the exchange couplings with environment. The decoherence-free subspaces have been identified by using the linear entropy.  相似文献   

12.
Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybroken environment consisting of a fermionic bath. Entanglement of states will decrease or remain constant under the influence of environment, and the class of states which remain unchanged has been found out.  相似文献   

13.
We investigate the time evolution process of one selected (initially prepared by optical pumping) vibrational molecular state S, coupled to all other intra-molecular vibrational states R of the same molecule, and also to its environment Q. Molecular states forming the first reservoir R are characterized by a discrete dense spectrum, whereas the environment reservoir Q states form a continuous spectrum. Assuming the equidistant reservoir R states we find the exact analytical solution of the quantum dynamic equations. S-Q and R-Q couplings yield to spontaneous decay of the S and R states, whereas S-R exchange leads to recurrence cycles and Loschmidt echo at frequencies of S-R transitions and double resonances at the interlevel reservoir R transitions. Due to these couplings the system S time evolution is not reduced to a simple exponential relaxation. We predict various regimes of the system S dynamics, ranging from exponential decay to irregular damped oscillations. Namely, we show that there are possible four dynamic regimes of the evolution: (i) independent of the environment Q exponential decay suppressing backward R - S transitions, (ii) Loschmidt echo regime, (iii) incoherent dynamics with multicomponent Loschmidt echo, when the system state is exchanged its energy with many states of the reservoir, (iv) cycle mixing regime, when long time system dynamics looks as a random-like. We suggest applications of our results for interpretation of femtosecond vibration spectra of large molecules and nano-systems.  相似文献   

14.
Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybroken environment consisting of a fermionic bath. Entanglement of states will decrease or remain constant under the influence of environment, and the class of states which remain unchanged has been found out.  相似文献   

15.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

16.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

17.
Tis paper demonstrates that multipartite Bell-inequality violations can be fully destroyed in a finite time in three-qubit states coupled to a general XY spin-chain with a three-site interaction environment. The Mermin—Ardehali—Belinksii—Klyshko inequality is used to detect the degree of nonlocality, as measured by the extent of their violations. The effects of system-environment couplings, the size of degrees of freedom of the environment and the strength of the three-site interaction on the Bell-inequality violations are given. The results indicate that the Bell-inequality violations of the tripartite states will be completely destroyed by decoherence under certain conditions for the GHZ state. The decoherence-free subspaces of our model are identified and the entanglement of quantum states is also discussed.  相似文献   

18.
For secure quantum teleportation (SQT) of coherent states two conditions are necessary to be fulfilled: Gaussian-state resources with two-way steering and teleportation fidelity higher than 2/3. We investigate and compare squeezed thermal states and squeezed vacuum states as initial resource states for SQT in an open quantum system, consisting of two uncoupled harmonic oscillators interacting with a thermal environment. The evolution of the open system is obtained in terms of the covariance matrix, by using the Gorini-Kossakowski-Lindblad-Sudarshan master equation. The SQT conditions are satisfied in a longer period of time in the case of initial squeezed vacuum states, therefore these states are better resource states for SQT than squeezed thermal states. We show that the admissible time for SQT decreases by increasing temperature, dissipation coefficient and average number of thermal photons, while for greater values of the squeezing parameter, SQT conditions are satisfied in a longer period of time.  相似文献   

19.
The electronic density of states of the SiAu surface is calculated using a continued fraction technique. The geometric structure of the surface alloy Au4Si is generated by molecular dynamics. The local density of states on Si atoms in a metallic environment differs qualitatively from the sp spectrum of a typical semiconductor. The calculated densities of p states of Si are in good agreement with recent X-ray spectra of Si in a metallic environment.  相似文献   

20.
The Fe-Al systems in the concentration range from 29 to 44 at. % Al are investigated in terms of the density functional theory. It is shown that, in the system under consideration, there can exist three magnetic states with close energies. Two of these three magnetic states have collinear magnetic moments (the ferromagnetic and antiferromagnetic states), and the third is a spin-spiral state. In collinear magnetic structures, the local magnetic moments are determined by the nearest chemical environment and, in the antiferromagnetic state, the iron atoms surrounded by a large number of aluminum atoms in their environment have a negative magnetic moment. The results obtained substantiate the applicability of modified models of the Jaccarino-Walker type for the interpretation of the experimental data obtained for Fe-Al alloys. The results of the calculations also indicate a significant role of Stoner excitations in the formation of magnetic order in these alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号