首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a general simple equation for accurately predicting the retention factors of ionizable compounds upon simultaneous changes in mobile phase pH and column temperature at a given hydroorganic solvent composition. Only four independent experiments provide the input data: retention factors measured in two pH buffered mobile phases at extreme acidic and basic pH values (e. g., at least +/- 2 pH units far from the analyte pK(a)) and at two column temperatures. The equations, derived from the basic thermodynamics of the acid-base equilibria, additionally require the knowledge of the solute pK(a )and enthalpies of acid-base dissociation of both the solute and the buffer components in the hydroorganic solvent mixture. The performance of the predictive model is corroborated with the comparison between theoretical and experimental retention factors of several weak acids and bases of important pharmacological activity, in mobile phases containing different buffer solutions prepared in 25% w/w ACN in water and at several temperatures.  相似文献   

2.
Micellar liquid chromatography (MLC) is a reversed-phase liquid chromatographic (RPLC) mode with mobile phases containing a surfactant (ionic or non-ionic) above its critical micellar concentration (CMC). In these conditions, the stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to diverse interactions (hydrophobic, ionic and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming a real alternative in some instances (and a complement in others) to classical RPLC with hydro-organic mixtures, owing to its peculiar features and unique advantages. This review is aimed to describe the retention mechanisms (i.e. solute interactions with both stationary and mobile phases) in an MLC system, revealed in diverse reports where the retention behaviour of solutes of different nature (ionic or neutral exhibiting a wide range of polarities) has been studied in a variety of conditions (with ionic and non-ionic surfactants, added salt and organic solvent, and varying pH). The theory is supported by several mechanistic models that describe satisfactorily the retention behaviour, and allow the measurement of the strength of solute-stationary phase and solute-micelle interactions. Suppression of silanol activity, steric effects in the packing pores, anti-binding behaviour, retention of ionisable compounds, compensating effect on polarity differences among solutes, and the contribution of the solvation parameter model to elucidate the interactions in MLC, are commented.  相似文献   

3.
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.  相似文献   

4.
The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.  相似文献   

5.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

6.
When pH is used as factor in reversed-phase liquid chromatographic (RPLC) separations, the need for providing quality and informative data with the minimal experimental effort becomes imperative. The most rational way to achieve this is by means of experimental designs. The interest in finding optimal designs involving solvent content and pH in RPLC is considerable, since these factors allow large variations in selectivity when ionisable compounds are involved. Unfortunately, the equations that describe the retention of these compounds with pH are nonlinear. As a consequence, factorial and other designs based on geometrical considerations are not well suited, whereas D-optimal and related designs can only be applied in an iterative fashion. In this work, an extension of G-optimal designs, aimed to enhance the quality of the predictions, is examined for problems involving solvent content and pH. The study was carried out with a set of probe ionisable compounds, for which information on retention behaviour was accurately known. A stepwise strategy was used to obtain a rapid estimation of the best design with a given number of experiments. The objective of the study was to investigate the distribution and number of points in the ideal design for compounds of different acid?Cbase behaviour, and the possibility of finding common designs for groups of compounds. A further goal was to derive design construction rules containing the information requirements, without needing any further mathematical treatment.
Figure
Three-dimensional view of an error surface  相似文献   

7.
Summary The proportion of organic modifier and the pH of the acetonitrile-water mixtures used as mobile phases were optimized in order to separate a group of diuretic compounds covering a wide range of physyco-chemical properties. The Linear Solvation Energy Relationship (LSER) formalism based either on the multiparameter π*, β and α scales or the single solvent polarity parameterE T N , have been used to predict their chromatographic behaviour as a function of the percentage of acetonitrile in the eluent. Moreover, correlation established between retention and pH of the aqueous-organic mobile phases have been used to predict the chromatographic behaviour of the diuretic compounds studied as a function of the eluent pH. Linear correlation between a function of the eluent pH. Linear correlation between the chromatographic retention and theE T N polarity parameter of mobile phases containing different percentages of organic modifier has been obtained Based on the knowledge of the acid-base dissociation constant the relation between retention and mobile phase pH has also been linearized. These relationship allowed an important reduction of the experimental retention data needed for developing a given separation and a great improvement in chromatographic optimization schemes.  相似文献   

8.
A previously reported eight-parameter mechanistic model [Part I of this work, J. Chromatogr. A 1163 (2007) 49] was applied to optimise the separation of 11 ionisable compounds (nine diuretics and two beta-blockers), considering solvent content, temperature and pH as experimental factors. The data from 21 experiments, arranged in a central composite design, were used to model the retention. Local models were used to predict efficiency and peak asymmetry. The optimisation strategy, based on the use of peak purity as chromatographic objective function and derived concepts, was able to find the most suitable experimental conditions yielding full resolution in reasonable analysis times. It also allowed a detailed inspection of the separation capability of the studied factors, and of the consequences of the shifts in the protonation constants originated by changes in solvent content and temperature. The size of the resolution structures suggested that the ranked importance of the factors was pH, organic solvent and temperature, giving rise to relatively narrow domains of full resolution. The three factors were found, however, worthwhile in the optimisation of selectivity. Predicted optimal conditions corresponding to two different optimal resolution regions were verified experimentally. In spite of the difficulties associated to the use of pH as optimisation factor, satisfactory agreement was found in both cases.  相似文献   

9.
Two kinds of retention models describing a behaviour of ionogenic substances in reversed-phase chromatographic systems were compared. Model A utilises a concept of limiting retention factors and is especially suitable for the prediction of retention of compounds co-existing in several forms in mobile phase. An effect of the concentration of organic modifier (e.g., methanol) on the magnitudes of the limiting retention factors and equilibrium constants (dissociation constants of the separated substances) can be expressed with the aid of various, more or less sophisticated, relationships. A stoichiometric displacement model (model B) in its original form simply relates the analyte retention to the content of organic modifier in the mobile phase. In this work, it was modified to also express an effect of the mobile phase pH introducing side equilibria (acid-base) into the model. Both models predict a sigmoidal dependence of the analyte retention factor on the mobile phase pH in accordance with experimental data, and allow, among others, to estimate dissociation constants from those data. Experimental dependencies between the analyte retention and the concentration of methanol in the mobile phase comply well with model A, whereas the stoichiometric displacement model could be used only in a limited range of the methanol concentrations.  相似文献   

10.
In an effort to gain insight into the relationship between stationary phase solvation and selectivity, the use of short- and medium-chained-length alcohols (methanol, n-propanol, n-butanol, and n-pentanol) as mobile phase modifiers in reversed-phase liquid chromatography (RPLC) was investigated to determine their impact on chromatographic selectivity. A wide range of mobile phase compositions was evaluated because of the large effect exerted by solvent strength on selectivity. Employing a set of six vanillin compounds as retention probes, evidence is presented to support the view that an increase in the hydrophobicity of the organic modifier used in RPLC can increase the selectivity of the C18 alkyl bonded phase while simultaneously decreasing the retention time of the eluting solutes. Thus, we are presented with an interesting paradox: higher selectivity and shorter retention times, which can be attributed to changes in either solvent selectivity and/or stationary phase solvation by the organic modifier.  相似文献   

11.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

12.
13.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

14.
The problems associated to the modelling and optimisation of the chromatographic resolution of mixtures involving ionisable solutes at varying pH and acetonitrile content are discussed. Several retention models that separate the contributions of solute, column and stationary phase, were used. The retention was predicted with low errors in large pH domains (2-12), which was an essential requirement to face the optimisation of resolution. The selected mixture was particularly problematic under the viewpoint of resolution, owing to the excessively diverse acid-base behaviour of solutes. This variety led to sudden drops in retention at different pH for each solute, yielding numerous peak crossing, which made finding shared regions of high resolution especially difficult. Conventional resolution diagrams for these situations are scarcely informative, since both the overall and the worst elementary resolutions drop to zero if at least two compounds remain overlapped, even when all the others are baseline resolved. A new chromatographic objective function is proposed to address this drawback. This function, called "limiting peak count", is based on the limiting peak purity concept, and measures the success in the resolution focusing on the resolved solutes, in contrast to conventional resolution assessments that attend mainly to the least resolved solutes. Limiting peak count yields the same result as conventional assessments when full resolution is possible, but it is also able to discriminate the maximal resolving power in low-resolution situations. It offers a different perspective to that given by the complementary mobile phases approach, and the computation is far simpler.  相似文献   

15.
16.
Improvements in stationary phase stability have been and remain a great task for research of new stationary phases. Metal oxide-based stationary phases appear as one of perspective alternatives to classical silica based stationary phases regarding to their similar effectiveness, different selectivity, different retention mechanism and mainly better chemical and thermal stability. In this study, the retention behaviour of ondansetron and its five pharmacopoeial impurities on TiO(2)-based reversed phase was investigated. The influence of buffer type, pH and concentration on retention was studied. Different types and amount of organic solvent in mobile phase were tested. The effect of temperature and flow rate on separation was investigated. The separation conditions were optimized and developed method validated. The retention parameters - retention time (t(R)), retention factor (k'), theoretical plate number (N), resolution between peaks due to nearby peaks (R(s)) and symmetry factor (A(s)) have been compared to parameters achieved on polybutadiene-coated zirconia column. The thermodynamic parameters of retention of analysed compounds - enthalpy, entropy and Gibbs free energy - were calculated and compared to those achieved on polybutadiene-coated zirconia column. This work proves similarity of retention behaviour of ondansetron and its five related compounds on zirconia-based and titania-based stationary phases and potential utilisation of polyethylene covered TiO(2)-based reversed stationary phase as an alternative to polybutadiene-coated ZrO(2) stationary phase in pharmaceutical analysis of ondansetron.  相似文献   

17.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

18.
The knowledge of the acid-base equilibria in water-solvent mixtures of both common buffers and analytes is necessary in order to predict their retention as function of pH, solvent composition and temperature. This paper describes the effect of temperature on acid-base equilibria in methanol-water solvent mixtures commonly used as HPLC mobile phases. We measured the delta-correction parameter (delta = sw pH - ss pH = Ej - log sw(gamma)oh) between two pH scales: pH measured in the solvent concerned and referred to the same standard state, ss pH, and the pH measured in that solvent mixture but referred to water as standard state, sw pH, for several methanol compositions in the temperature range of 20-50 degrees C. These determinations suggest that the delta-term depends only on composition of the mixture and on temperature. In water-rich mixtures, for which methanol is below 40% (w/w), delta-term seems to be independent of temperature, within the experimental uncertainties, whereas for methanol content larger than 50% (w/w) the delta-correction decreases as temperature increases. We have attributed this decrease to a large increase in the medium effect when mixtures have more than 50% methanol. The pKa of five weak electrolytes of different chemical nature in 50% methanol-water at 20-50 degrees C are presented: the effect of temperature on pKa was large for amines, pyridine and phenol, but almost no dependence was found for benzoic acid. This indicates that buffers can play a critical role in affecting retention and selectivity in HPLC at temperatures far from 25 degrees C, particularlyfor co-eluted solutes.  相似文献   

19.
The solvation parameter model is used to create systems maps for the separation of neutral organic compounds on a Chromolith Performance RP-18e octadecylsiloxane-bonded silica-based monolithic column for water-acetonitrile and water-methanol mobile phase compositions from 10 to 70% (v/v) organic solvent. These results demonstrate that the retention properties of the monolithic column are similar to those of conventional octadecylsiloxane-bonded silica particle-packed columns. It is further shown that the selectivity for the monolithic column falls within the selectivity range for typical particle-packed columns at two mobile phase compositions for which a direct comparison is possible.  相似文献   

20.
Summary The retention behaviour of an homologous series of phosphorylated oligodeoxythymidylic acid (pd(T)5–18) oligonucleotides was studied using reversed-phase ion-pair chromatography with isocratic elution conditions. The effects of temperature, pH, eluent ionic strength, percentage organic modifier, concentration and alkyl chain length of the ion-pairing reagent were investigated. The retention behaviour was generally explicable by current theoretical models of ion-pair chromatography. However, the marked effect of mobile phase pH on the retention of the oligonucleotides was unexpected, and this was ascribed to the presence of ionisable residual silanols on the surface of the reversed-phase packing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号