首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Piperidine‐functionalized silica as a basic heterogeneous catalyst was synthesized via a simple protocol by condensing silica chloride with piperidine. The catalyst was characterized with various techniques (FT‐IR, solid state NMR, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetric, elemental, and NH3 and CO2 temperature‐programmed desorption analyses). Surface area was also evaluated through Brunauer–Emmett–Teller analysis. Its catalytic activity was evaluated for Claisen–Schmidt condensation under solvent‐free conditions. The catalyst was easily recovered and reused up to five cycles without considerable loss of activity and was not deactivated due to amide formation. Also, this method has attractive advantages such as short reaction time, mild reaction conditions, good to excellent yield of products, easy handling of the catalyst and simple operational procedure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Copper(I) oxide nanoparticles supported on magnetic casein (Cu2O/Casein@Fe3O4NPs) has been synthesized as a bio‐supported catalyst and was characterized using powder X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray and Fourier transform infrared spectroscopies, thermogravimetric analysis and inductively coupled plasma optical emission spectrometry. The catalytic activity of the synthesized catalyst was investigated in one‐pot three‐component reactions of alkyl halides, sodium azide and alkynes to prepare 1,4‐disubstituted 1,2,3‐triazoles with high yields in water. The reaction work‐up is simple and the catalyst can be magnetically separated from the reaction medium and reused in subsequent reactions.  相似文献   

3.
Nanomagnetic‐supported sulfonic acid is found to be a powerful and reusable heterogeneous catalyst for the rapid synthesis of α,α′‐bis‐(substituted‐benzylidene)cycloalkanones under conventional heating and solvent free conditions. High yield, simple work up and easy recovery of the catalyst are the most obvious advantages of this procedure.  相似文献   

4.
SiO2–SO3H, with a surface area of 115 m2/g and pore volume of 0.38 cm3g−1, and 1.32 mmol H+/g was used as a 20% w/w catalyst for the preparation of methyl salicylate (wintergreen oil or MS) from acetylsalicylic acid (ASA). A 94% conversion was achieved in a microwave reactor over 40 min at 120 °C in MeOH. The resulting crude product was purified by flash chromatography. The catalyst could be reused three times.  相似文献   

5.
A simple, efficient and environmentally benign solid acid catalyst was prepared by anchoring a propyl sulfonic acid on the surface of silica‐coated magnetic nanoparticles by low cost precursors. The catalyst has been then engaged in the efficient β‐amino carbonyl compounds production via three component Mannich reaction under solvent free reaction condition at room temperature. After the completing the reaction, the catalyst was readily separated by external magnet and reused for 10 successive rounds of reaction, without any significant loss in catalytic efficiency. The solid acidic system presented reusable strategy for the efficient synthesis of β‐amino carbonyl compounds, simplicity in operation, and green aspects by avoiding toxic conventional catalysts under solvent‐free condition.  相似文献   

6.
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.  相似文献   

7.
A new magnetically separable nickel catalyst (Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2) was readily prepared and structurally characterized by Fourier transform infrared spectroscopy (FT‐IR), Scanning electron microscopy (SEM), Energy‐dispersive X‐ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD) and Atomic absorption spectroscopy (AAS). The Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2 exhibited efficient catalytic activity in the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones and polyhydroquinolines. Catalysis research under water and solvent‐free conditions makes also this synthetic protocol ideal and fascinating from the environmental point of view. The catalyst can be magnetically recovered after the reaction and can be reused for many times without appreciable decrease in activity.  相似文献   

8.
9.
A new thiazolylazo chromogenic reagent, 2-[2-(6-methylbenzo-thiazoly)azo]-5-diethylaminobenzoic acid (6-Me-BTAEB), has been synthesized. Its chromogenic reaction with microamounts of nickel in the presence of sodium dodecylsulfate (SDS) has been thoroughly studied. 6-Me-BTAEB reacts with nickel(II) in weak acid medium containing appropriate amounts of SDS to form a blue-violet complex with high sensitivity, good selectivity and high stability. The composition is found to be 1:2 (nickel to 6-Me-BTAEB) and its absorption maximum is at 650 nm with an apparent molar absorptivity of 1.67 × 105l mole–1 cm–1. Beer's law is obeyed over the range 0-0.4 g of nickel per ml. The proposed method has been applied to the direct determination of nickel in aluminium alloys, pure magnesium and low alloy steels at the 0.2–0.3% (w:w) level with satisfactory results.  相似文献   

10.
In this study, 1-(1-alkylsulfonic)-3-methylimidazolium chloride as a new, green, and reusable Brønsted acid catalyst was prepared. In this protocol, we used for the regioselective ring-opening reactions of various epoxiodes with sodium azide to afford the corresponding β-azido alcohols in excellent yields and short reaction time under mild and neutral reaction conditions. This method offers several advantages including excellent regioselectivity, clean reactions, simple work-up procedure, a recyclable catalyst, and use of an eco-friendly catalyst.  相似文献   

11.
Mn(III)–pentadentate Schiff base complex supported on multi‐walled carbon nanotubes as a recyclable and reusable, green and nano‐heterogeneous catalyst was designed and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy , inductively coupled plasma mass spectrometry, elemental analysis and thermogravimetric analysis. A facile, eco‐friendly, mild and green procedure was developed for the one‐pot three‐component synthesis of tetrahydrobenzo[b ]pyrans via tandem Knoevenagel–Michael cyclocondensation reactions between aromatic aldehydes, 1,3‐diones and malononitrile using a catalytic amount of Mn(III)–pentadentate Schiff base complex supported on MWCNTs as an efficient recyclable heterogeneous catalyst under solvent‐free conditions at room temperature. This process has the advantages of easy availability, stability, recyclability and eco‐friendliness of the catalyst, short reaction times, high to excellent yields and simple work‐up procedure.  相似文献   

12.
In this research, a novel organic–inorganic hybrid salt, namely, N1,N1,N2,N2‐tetramethyl‐N1,N2‐bis(sulfo)ethane‐1,2‐diaminium tetrachloroferrate ([TMBSED][FeCl4]2) was prepared and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping, field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), thermal gravimetric (TG), differential thermal gravimetric (DTG), and vibrating‐sample magnetometry (VSM) analyses. Catalytic activity of the hybrid salt was tested for the synthesis of N,N′‐alkylidene bisamides through the reaction of benzamide (2 eq.) and aromatic aldehydes (1 eq.) under solvent‐free conditions in which the products were obtained in high yields and short reaction times. The catalyst was superior to many of the reported catalysts in terms of two or more of these factors: the reaction medium and temperature, yield, time, and turnover frequency (TOF). [TMBSED][FeCl4]2 is a Brønsted–Lewis acidic catalyst; there are two SO3H groups (as Brønsted acidic sites) and two tetrachloroferrate anions (as Lewis acidic sites) in its structure. Highly effectiveness of the catalyst for the synthesis of N,N′‐alkylidene bisamides can be attributed to synergy of the Brønsted and Lewis acids and also possessing two sites of each acid.  相似文献   

13.
NH2SO3H–SiO2/water as a novel catalytic system was used for the synthesis of (α,β‐unsaturated) β‐amino ketones via aza‐Michael reaction at reflux conditions. The methodology was of general applicability and the catalyst exhibited activity up to five cycles. The catalyst was characterized for the first time using FT‐IR, X‐ray diffraction and scanning electron microscopic–energy dispersion analytical X‐ray. The stability of the catalyst was evaluated by differential scanning calorimetry and TGA/differential thermal analysis. High efficiency of the catalyst along with its recycling ability and the rather low loading demonstrated in reactions are the merits of the presented protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
《Tetrahedron: Asymmetry》2014,25(12):865-922
This review discusses methods for the metallo-, organo- and biocatalytic asymmetric synthesis of chiral organophosphorus compounds with many applications in stereoselective synthesis with references to updated literature reports as well as the author’s original research. Asymmetric catalytic hydrogenation and reduction with chiral organometallic complexes, together with actively used asymmetric organocatalytic versions of various reactions enable us to synthesize chiral organophosphonates and phosphinates with high enantioselectivity and purity. Asymmetric catalysis is also an effective tool to realize some classic reactions of phosphorus chemistry in a stereospecific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号