首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi‐core–shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three‐atom‐thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.  相似文献   

2.
Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance. In this study, we report a sol-gel synthesis approach to obtain non-metal doped TiO2 with sponge-like structure and surface-phase junctions all at once. While doping of carbon and nitrogen shifted the activation wavelength to the visible-light region, the innovative use of perchloric acid as a pore-making agent led to the formation of three-dimensional lamellar and porous structure with surface-phase junctions. High surface area with catalytic active sites rendered by the sponge-like structure and surface-phase junctions contributed to the much improved photocatalytic degradation efficiency toward rhodamine B, tetracycline and Disperse Red 60 with excellent reusability and stability. The improved generation and separation efficiency of the photo-induced charge carriers of the as-prepared TiO2 were supported by electrochemical impedance measurements and transient photocurrent responses. This method could also be applied to other photocatalysts to achieve structural alteration and element doping simultaneously.  相似文献   

3.
In this study, the photocatalytic efficiency of anatase‐type TiO2 nanoparticles synthesized using the sol–gel low‐temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV–light‐assisted photo and NaBH4‐assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed‐bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH‐modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH‐modified Cu/TiO2 nanoparticles.  相似文献   

4.
Ni‐doped CdS nanowires were synthesized by a simple one‐step method. X‐ray diffraction, X‐ray photoelectron spectroscopy, and photoluminescence spectroscopy confirmed that light Ni doping can form shallow surface states due to the presence of substitutional Ni ions, and heavy Ni doping can form deep surface states due to the presence of interstitial Ni ions. Surface photovoltage spectroscopy and transient photovoltage measurements revealed that the shallow surface states can prolong the lifetime of the photogenerated charge carriers, whereas the deep surface states lead to recombination of the photogenerated charge carriers. The relationship between different surface states and the photocatalytic performance of CdS nanocrystals are discussed. The enhanced density of shallow surface states due to light Ni doping significantly promotes photocatalytic H2 production.  相似文献   

5.
Defect engineering is a versatile approach to modulate band and electronic structures as well as materials performance. Herein, metal–organic frameworks (MOFs) featuring controlled structural defects, namely UiO‐66‐NH2‐X (X represents the molar equivalents of the modulator, acetic acid, with respect to the linker in synthesis), were synthesized to systematically investigate the effect of structural defects on photocatalytic properties. Remarkably, structural defects in MOFs are able to switch on the photocatalysis. The photocatalytic H2 production rate presents a volcano‐type trend with increasing structural defects, where Pt@UiO‐66‐NH2‐100 exhibits the highest activity. Ultrafast transient absorption spectroscopy unveils that UiO‐66‐NH2‐100 with moderate structural defects possesses the fastest relaxation kinetics and the highest charge separation efficiency, while excessive defects retard the relaxation and reduce charge separation efficiency.  相似文献   

6.
Nanospheres of Ag‐coated Fe3O4 were successfully synthesized and characterized. Photocatalytic properties of Fe3O4@Ag composites have been investigated using steady‐state studies and laser pulse excitations. Accumulation of the electrons in the Ag shell was detected from the shift in the surface plasmon band from 430 to 405 nm, which was discharged when an electron acceptor such as O2, Thionine (TH) or C60 was introduced into the system. Charge equilibration with redox couple such as C60●–/C60 indicated the ability of these core–shell structures to carry out photocatalytic reduction reactions. As well, outer Ag layer could boost charge separation in magnetic core through dual effects of Schottky junction and localized surface plasmonic resonance (LSPR)‐powered band gap breaking effect under sunlight irradiation; resulted in higher photocatalytic degradation of diphenylamine (DPA). The maximum photocatalytic degradation rate was achieved at optimum amount of Ag‐NP loading to products. Adsorption studies confirmed that degradation of DPA dominantly occurred in solution. Moderately renewability of the nanocatalysts under sunlight was due to oxidation and dissolution of the outer Ag layer.  相似文献   

7.
TiO2 nanoparticles are of great current interest for applications in photo‐electronic materials including light‐energy conversion, artificial photosynthetic systems as well as photocatalysis. The success of these applications relies on the exciton recombination dynamics and visible‐light sensitivity of the TiO2 nanomaterials. Thus, in order to develop the highly efficient photo‐electronic materials absorbing visible light, different low dimensional TiO2 nanostructures such as nanodiscs, nanofibers and nanochains were synthesized, and thereafter their surfaces were modified by incorporating with Sn‐porphyrins and heteropoly acid. The optoelectronic properties of the surface‐modified nanomaterials were investigated with regard to the optical properties and the surface exciton dynamics by using both steady‐state and ultrafast time‐resolved laser spectroscopic techniques including single nanoparticle photoluminescence technique. These results were correlated with the photo‐electronic properties including photocatalytic activities and solar cell efficiencies, indicating that the electron transfer mechanism in the modified nanostructures may be similar to the “Z‐scheme” of the plant photosynthetic system so that both photocatalytic activity and solar cell efficiencies were synergistically enhanced by using two color illumination.  相似文献   

8.
《化学:亚洲杂志》2017,12(4):387-391
Facilitating charge‐carrier separation and transfer is fundamentally important to improve the photocatalytic performance of semiconductor materials. Herein, two‐dimensional hexagonal WO3 nanoplates were synthesized by a two‐step route: rapid evaporation and solid‐phase sintering. The as‐prepared WO3 exhibits an enhanced activity of photocatalytic water oxidation compared to bulk monoclinic WO3. The electron dynamics analysis reveals that a more efficient charge‐carrier separation in the former can be obtained, the origin of which can be attributed to an increased number of surface defects in hexagonal WO3 nanoplates. This work not only presents a novel and simple method to produce two‐dimensional hexagonal WO3 nanoplates, but also demonstrates that surface defects and two‐dimensional geometric structures can promote the charge separation, which may be extended to the design of other efficient photocatalysts.  相似文献   

9.
马艺  王秀丽  李灿 《催化学报》2015,(9):1519-1527
二十世纪八十年代以来,特别是近十年,光催化研究在利用可再生能源太阳能的道路上飞速发展。越来越多的研究表明,相结结构的构筑是有效提高半导体光催化剂性能的重要策略。其中, TiO2作为重要的模型光催化剂,其相关研究成果呈现出指数增长的趋势。本综述围绕TiO2模型光催化剂,主要介绍TiO2表面相结的研究成果,包括TiO2表面相的表征、锐钛矿:金红石TiO2相结用于光催化产氢研究、TiO2相结在光催化中作用的最新认识等。在表征方面,通过表面灵敏的紫外拉曼光谱研究了TiO2相变过程中表面相结构的变化,结合可见拉曼以及XRD表征揭示了TiO2独特的相变过程,即相变始于锐钛矿粒子的界面处,小粒子逐渐团聚为大粒子,致其相变从大粒子体相开始最终扩展到整个粒子。使用CO, CO2探针红外光谱,根据锐钛矿和金红石表面吸附物种的差异,进一步证实了锐钛矿:金红石表面相结结构,为紫外拉曼光谱的表面表征特性提供坚实证据。同时,利用发光光谱观察到锐钛矿晶相的可见发光带和金红石晶相的近红外发光带,并基于此给出了TiO2材料表面相结结构的荧光表征新方法。此外荧光光谱还提供了锐钛矿、金红石相中载流子动力学信息,揭示了束缚态在光催化中的作用。在光催化应用方面,观察到混相结构TiO2较单独锐钛矿及金红石相具有更高的光催化产氢活性,通过在较大金红石颗粒上担载纳米锐钛矿粒子,证明了相结结构在提高光催化活性中的核心作用,并首次提出了锐钛矿:金红石表面异相结结构概念,推断其对电荷分离的促进作用是最终提高反应活性的原因。之后将此概念应用到改善商品TiO2(P25)光催化活性中,通过可控热处理精细调控P25的表面相结构,在光催化重整生物质衍生物产氢实验中,成功将P25光催化产氢活性提高3?5倍。之后发展了新的TiO2表面控制方法,通过加入Na2SO4等相变控制剂,延缓了TiO2从锐钛矿向金红石的相变过程,在较高温度下实现TiO2相结结构的调控,最终可将P25光催化重整甲醇制氢的活性提高6倍,同时通过高分辨电镜清晰观察到锐钛矿:金红石相结的原子层生长接触。在相结作用机理方面,多种时间分辨光谱技术以及理论计算被用作探索锐钛矿:金红石相结处的电子转移机理。通过时间分辨红外光谱对TiO2表面相结结构作用的研究,特别是利用锐钛矿、金红石不同的瞬态吸收光谱特征,证明了锐钛矿:金红石相结处的载流子转移过程,存在锐钛矿向金红石的电子转移过程。模型光催化剂TiO2相结的研究成果,加深了对光催化机理的认识,促进新型高效光催化体系的设计合成。  相似文献   

10.
Titanium oxide–active carbon composites (TiO2–AC) with photocatalytic activity were prepared by sol–gel method at low temperature. Titanium isopropoxide and active carbon were used as precursors, ethanol as solvent and HNO3 as catalyst. The composition of the studied composites was accomplished by means of X-ray diffraction, and Fourier Transform-Infrared spectrometry. The rutile crystalline phase was present in all samples. In scanning electron microscopy images the TiO2 aggregates existed either on the surface of the active carbon or heterogeneously dispersed over the whole catalyst matrix. The contact angle and point of zero charge measurements were applied to characterise the surface energy and surface charge. The photocatalytic activities of the TiO2–AC composites were evaluated in the bleaching of methyl orange and methylene blue solution from ternary mixture of methyl orange, methylene blue and Triton X100. The double divisor ratio spectra derivative method (as a multivariable calibration method) was developed to overcome the spectral overlapping, for the simultaneous analysis of ternary mixture.  相似文献   

11.
Solar energy conversion is inciting tremendous research efforts in many fields due to the vast potential of sunlight as a sustainable energy source. For solar energy to become widely used and become a major component of our energy mix, energy storage on large scales must be addressed and the components used must be abundant. Artificial photosynthesis to produce solar fuels holds promise as a way to convert solar energy into storable energy. Organic photocatalysts have rapidly established themselves as a viable alternative to inorganic systems. Organic photocatalyst can be prepared from inexpensive precursors and offer a synthetic versatility and tunability that can be exploited to improve efficiencies. Carbon nitride (CNx) has emerged as a leading organic photocatalyst with advantageous chemical and photo stabilities. Recombination of photogenerated electrons and holes limit the efficiency of CNx materials below levels necessary to become a viable energy production system. To improve the efficiency and key characteristics such as light harvesting, charge carrier lifetime, and interfacial rate of charge transfer, a second material is put in contact with CNx to form a heterojunction. While there are many examples of heterojunctions improving the photocatalytic activity beyond that of the isolated CNx, we are still lacking the deep understanding of charge carrier dynamics necessary to rationalize the improvements and design optimal junctions. This review covers the studies of CNx heterojunctions that have used optical methods to monitor the charge carrier dynamics. Time-resolved photoluminescence (TRPL) is the most common technique used and there are many examples that have used transient absorption spectroscopy (TAS) to probe the charge carrier dynamics. However, attempting to link the lifetime change to the activity differences does not yield a clear trend. It is likely that the reactive charges are not consistently being monitored and is obscuring the expected correlations. Both shorter and longer charge carrier lifetimes can be observed with both TRPL and TAS techniques and can be interpreted as arising from interfacial charge separation. Even when the same materials are used in the junction there is no consistency in observing a shorter or longer lifetime. The holistic view of charge carrier dynamics in CNx heterojunctions presented here intends to identify overarching themes from a wide range of CNx-containing systems and help take stock of where our current understanding stands. More specific spectral assignments and linking the observed lifetimes to certain photophysical or photochemical processes are needed to build models to help us understand the links between the charge carrier dynamics and the activity. These are crucial to develop general strategies that will lead to optimal CNx heterojunctions.  相似文献   

12.
Graphitic carbon nitride (g-C3N4) photocatalysts were synthesized via a one-step pyrolysis process using melamine, dicyandiamide, thiourea, and urea as precursors. The obtained g-C3N4 materials exhibited a significantly different performance for the photocatalytic reduction of Cr(VI) under white light irradiation, which is attributed to the altered structure and occupancies surface groups. The urea-derived g-C3N4 with nanosheet morphology, large specific surface area, and high occupancies of surface amine groups exhibited superior photocatalytic activity. The nanosheet morphology and large surface area facilitated the separation and transmission of charge, while the high occupancies of surface amine groups promoted the formation of hydrogen adsorption atomic centers which were beneficial to Cr(VI) reduction. Moreover, the possible reduction pathway of Cr(VI) to Cr(III) over the urea-derived g-C3N4 was proposed and the reduction process was mainly initiated by a direct reduction of photogenerated electrons.  相似文献   

13.
Photocatalytic oxidation of methyl orange (MO) and Congo red (CR) as typical model organic contaminants was investigated in aqueous solution within a cooperating Au/TiO2/sepiolite heterostructure system under UV light irradiation. The Au/TiO2/sepiolite composites with a single-crystalline (anatase) framework was synthesized by a facile sol-gel method using titanium tetrachloride as a TiO2 precursor and depositing metal Au on the surface of TiO2 nanostructures via a facile chemical reduction process. The crystal structure, surface area, light adsorption and the photoinduced charge separation rate of the photocatalyst prepared were characterized in detail. As compared with the pristine TiO2, the Au/TiO2/sepiolite hybrid material exhibited good photocatalytic efficiency (90%) for the UV-light photooxidation of methyl orange, which is four-fold of that of reference TiO2. In addition, Au/TiO2/sepiolite hybrid material also shows a good photodegradation performance toward Congo red removal. The highly efficient photocatalytic activity is associated with the strong adsorption ability of sepiolite for aromatic dye molecules, fast photogenerated charge separation due to the formation of Schottky junction between TiO2 and metallic Au. This work suggests that the combination of the excellent adsorption properties of sepiolite and the efficient separation effect of noble metallic nanoparticles provides a versatile strategy for the synthesis of novel and highly efficient photocatalysts.  相似文献   

14.
Ag3PO4 spherical particles were synthesized by a facile precipitation method using silver nitrate and Na2HPO4 as precursors. The as‐prepared samples had a high photocatalytic activity toward Rhodamine B (RhB) degradation under visible‐light illumination. With increasing recycling times the photocatalytic activity first increased and then decreased. Based on systematic characterization of particles by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV/Vis absorption spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), a possible mechanism responsible for the improvement and subsequent decline of the photocatalytic performance of Ag3PO4 is proposed. Ag3PO4 spherical particles recycled for four times showed the highest photocatalytic activity because, according to our mechanism, Ag nanoparticles deposited on Ag3PO4 acted as electron trapping centers to prevent photogenerated electron‐hole pairs from recombination. A further increase in the recycle times decreases the photocatalytic activity owing to the shielding effect by Ag layers on the surface of Ag3PO4. The results presented herein shed new light on the photostability of Ag3PO4 spherical particles and are potentially applicable to other photocatalytically active composites.  相似文献   

15.
Various intermetallic phases composed of Pt/Ag supported on SiO2-gel were synthesized by reduction of Pt(allyl)2 and Ag[cyclooctadiene]2+ precursors anchored on the support surface. This method afforded highly dispersed metallic particles. X-ray analysis was used to ascertain the occurrence of alloy, for structural identification of Pt/Ag phases and degree of dispersion. The catalytic activity of these systems was studied in gas-phase hydrogenation of propene within the temperature range 10–90 °C. Kinetic parameters such as specific reaction rates, reaction orders and apparent activation energies were calculated as functions of the Pt/Ag ratio. Results are compared and discussed in terms of the structural and electronic features of the active metallic phase.  相似文献   

16.
The objective of the tandem hydroformylation-hydrogenation of alkenes to corresponding alcohols was to design an efficient and stable heterogeneous catalyst. To this end, a series of novel heterogeneous graphitic carbon nitride (g-CN) supported bimetallic Rh−Co nanoparticle catalysts (Rh−Co/g-CN) were prepared and subsequently studied for this one-pot two-step reaction. The lamellar structure makes Rh and Co nanoparticles with diameters of <1 nm and 20 nm, respectively, homogeneously deposited on the surface of g-CN layers, exhibit remarkable conversion of styrene (99.9 %) and chemoselectivity for alcohol (87.8 %). More importantly, Co nanoparticles are found to play an important role in the improvement of the chemoselectivity for alcohol due to the formation of catalytic active species [HCo(CO)y]. Besides the detailed investigation of the catalytic properties of Rh−Co/g-CN under different reaction conditions, the reuse of Rh−Co/g-CN was conducted for five times and no evident decrease in the activity and chemoselectivity was observed. Therefore, we expect that this work could offer an initial insight into g-CN-based heterogeneous catalyst on the tandem hydroformylation-hydrogenation reaction.  相似文献   

17.
Understanding the photoluminescence (PL) and photocatalytic properties of carbon nanodots (CNDs) induced by environmental factors such as pH through surface groups is significantly important to rationally tune the emission and photodriven catalysis of CNDs. Through adjusting the pH of an aqueous solution of CNDs, it was found that the PL of CNDs prepared by ultrasonic treatment of glucose is strongly quenched at pH 1 because of the formation of intramolecular hydrogen bonds among the oxygen‐containing surface groups. The position of the strongest PL peak and its corresponding excitation wavelength strongly depend on the surface groups. The origins of the blue and green emissions of CNDs are closely related to the carboxyl and hydroxyl groups, respectively. The deprotonated COO? and CO? groups weaken the PL peak of the CNDs and shift it to the red. CNDs alone exhibit photocatalytic activity towards degradation of Rhodamine B at different pH values under UV irradiation. The photocatalytic activity of the CNDs is the highest at pH 1 because of the strong intramolecular hydrogen bonds formed among the oxygen‐containing groups.  相似文献   

18.
利用二氨基马来腈(DMNA)与二聚氰胺(DCDA)的高温共聚合反应, 制备了石墨相氮化碳 (g-C3N4), 并通过X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、透射电镜 (TEM)、氮气吸脱附实验 (N2-sorption)、电子顺磁共振 (EPR)、紫外-可见漫反射光谱 (UV-Vis DRS) 和荧光 (PL) 光谱等表征手段,系统考察了共聚合改性对g-C3N4晶体结构、化学结构、能带结构、织构、光吸收性能和光催化性能等的影响.研究结果表明:共聚合改性后氮化碳材料仍保持石墨相晶体结构, 但其π电子的离域性增强, 并在催化剂表面产生异质结构, 进而提高了氮化碳在可见光区域的光吸收性能, 并促进了光生载流子的有效分离. 性能评价结果显示, DMNA改性的氮化碳在可见光下光催化产氢活性明显高于未改性的样品, 当DMNA用量为0.01g时, 催化剂的产氢速率最高, 达到45.0 μmol·h-1, 为纯氮化碳样品的4.5倍.  相似文献   

19.
Stable sols of TiO2 were synthesized by a non-aqueous sol–gel process using titanium (IV) isopropoxide as precursor. The microstructure, optical and morphological properties of the films obtained by spin-coating from the sol, and annealed at different temperatures, were investigated using scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy and ellipsometry. The crystalline structure of the films was characterized by X-ray diffraction and their photocatalytic activity was evaluated for the oxidation of ethanol in air. The influence of the calcination temperature, pre-heat treatment and the number of layers was studied. Simultaneous thermo-gravimetric and differential thermal analysis measurements were carried out to ascertain the thermal decomposition behavior of the precursors. In order to obtain a higher photoresponse in the visible region, a series of vanadium-, niobium- and tantalum-doped TiO2 catalysts was synthesized by the same sol–gel method. For V doping two different precursors, a vanadium alkoxide and V2O5, were used. The effect on the crystallization and photocatalytic activity of the doped TiO2 films was investigated. Furthermore, to identify the effective composition of the samples, they were characterized by X-ray photoelectron spectroscopy and the surface area of the powders was measured by N2 adsorption. The 10 wt.% doped catalysts exhibit high photocatalytic activity under visible light and among them the best performance was obtained for the sample containing Ta as dopant. The crystallite sizes are closely related to the photocatalytic activity.  相似文献   

20.
氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量gCN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号