首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Rhodium-catalyzed hydroacylation using alkynes substituted with pendant nucleophiles, delivers linear α,β-unsaturated enone intermediates with excellent regioselectivity. These adducts are used to construct a broad range of diversely substituted, saturated O-, N- and S-heterocycles in a one-pot process. Judicious choice of cyclisation conditions enabled isolation of O-heterocycles with high levels of diastereoselectivity. A variety of derivatisation reactions are also performed, generating functionalised hydroacylation products. This sequence serves as a general approach for the synthesis of fully saturated heterocycles.

We demonstrate a one-pot hydroacylation/intramolecular conjugate-addition sequence to access a series of complex stereodefined heterocycles. Subsequent diversification of products is achieved, furnishing functionalized sp3-rich fragments.  相似文献   

2.
An efficient strategy combining the stereocontrol of organocatalysis with the diversity-generating character of multicomponent reactions is described to produce structurally unique, tetrasubstituted cyclopentenyl frameworks. An asymmetric Michael addition–hemiacetalization between α-cyanoketones and α,β-unsaturated aliphatic aldehydes was performed for constructing cyclic hemiacetals, which were next employed as chiral bifunctional substrates in a new diastereoselective intramolecular isocyanide-based multicomponent reaction. This approach furnished a diversity of structurally complex compounds – including peptidomimetics and natural product hybrids in high stereoselectivity (up to >99% ee and up to >99 : 1 dr) and in moderate to high yields.

Simple and available reagents are combined in this new three-component isocyanide-based multicomponent reaction providing an interesting and straightforward way to prepare complex and highly functionalized cyclopentenyl rings.  相似文献   

3.
The development of an iterative one-pot peptide ligation strategy is described that capitalises on the rapid and efficient nature of the diselenide–selenoester ligation reaction, together with photodeselenisation chemistry. This ligation strategy hinged on the development of a novel photolabile protecting group for the side chain of selenocysteine, namely the 7-diethylamino-3-methyl coumarin (DEAMC) moiety. Deprotection of this DEAMC group can be effected in a mild, reagent-free manner using visible light (λ = 450 nm) without deleterious deselenisation of selenocysteine residues, thus enabling a subsequent ligation reaction without purification. The use of this DEAMC-protected selenocysteine in iterative DSL chemistry is highlighted through the efficient one-pot syntheses of 60- and 80-residue fragments of mucin-1 as well as apolipoprotein CIII in just 2–4 hours.

A method for the rapid one-pot iterative assembly of proteins via diselenide–selenoester ligation (DSL) chemistry is described that capitalises on a novel coumarin-based photolabile protecting group for selenocysteine.  相似文献   

4.
The use of bulky ligands in the rhodium-catalyzed reaction of aldehydes 7 (R1 = Ph) and 18 with 1-octyne increased the selectivity for ketones 13 and 20, to the detriment of ketones 12 and 19. Bulky phosphines reduced the hydroacylation reaction rate, leading to competition from the addition of the benzoic acid co-catalyst to the alkynes. This competing reaction can be suppressed by using the clay Montmorillonite K 10 (MK-10) as the co-catalyst instead of benzoic acid.  相似文献   

5.
The 1,1,2,2-tetrafluoroethylene unit is prevalent in bioactive molecules and functional materials. Despite being in principle a straightforward strategy to access this motif, the direct tetrafluorination of alkynes involves very hazardous or inconvenient reagents. Therefore, safer and convenient alternatives are sought after. We developed a mild and operationally simple perfluorination method converting 1-alkynyl triazenes into 1,1,2,2-tetrafluoro alkyl triazenes, employing cheap and readily accessible reagents. Moreover, a judicious tuning of the reaction conditions enables access to α-difluoro triazenyl ketones. Complementary, electrophilic fluorination of alkynyl triazenes gives rise to the regioisomeric α-difluoro acyl triazenes. These three chemo- and regio-divergent protocols enable access to elusive fluorinated 1-alkyl and 1-acyl triazenes, thus expanding the chemical space for these unusual entities. Furthermore, several reaction intermediates and side products revealed insights on the reaction pathways that may be useful for further fluorination chemistry of alkynes.

Three mild and operationally simple fluorination protocols convert 1-alkynyl triazenes either into attractive 1,1,2,2-tetrafluoro alkyl triazenes, α-difluoro α-triazenyl ketones or α-difluoro acyl triazenes.  相似文献   

6.
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol.

An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).  相似文献   

7.
The meso-unsubstituted expanded porphyrinoid 3, incorporating two carbazole moieties, acts as an effective ligand for Co(ii) and permits the isolation and X-ray diffraction-based characterization of a 6 : 3 metal-to-ligand metallocage complex that converts spontaneously to the constituent 2 : 1 metal-to-ligand metalloring species in chloroform solution. The discrete metalloring is formed directly when the Co(ii) complex is crystallized from supersaturated solutions, whereas crystallization from more dilute solutions favors the metallocage. Studies with two other test cations, Pd(ii) and Zn(ii), revealed exclusive formation of the monomeric metalloring complexes with no evidence of higher order species being formed. Structural, electrochemical and UV-vis-NIR absorption spectral studies provide support for the conclusion that the Pd(ii) complex is less distorted and more effectively conjugated than its Co(ii) and Zn(ii) congeners, an inference further supported by TD-DFT calculations. The findings reported here underscore how expanded porphyrins can support coordination modes, including bimetallic complexes and self-assembled cage structures, that are not necessarily easy to access using more traditional ligand systems.

Carbazole containing expanded carbaporphyrinoid ligand supports the formation of 2 : 1 metal-to-ligand complexes with Pd, Co, and Zn. Solid-state studies also revealed formation of a 6 : 3 metal-to-ligand metallocage in the case of Co complexation.  相似文献   

8.
An isothiourea-catalysed enantioselective synthesis of novel tetrahydroindolizine derivatives is reported through a one-pot tandem sequential process. The application of 2-(pyrrol-1-yl)acetic acid in combination with either a trifluoromethyl enone or an α-keto-β,γ-unsaturated ester in an enantioselective Michael addition–lactonisation process, followed by in situ ring-opening and cyclisation, led to a range of 24 tetrahydroindolizine derivatives containing three stereocentres in up to >95 : 5 dr and >99 : 1 er.

The isothiourea-catalysed enantioselective synthesis of tetrahydroindolizine derivatives containing three stereocentres is reported through a one-pot tandem sequential process.  相似文献   

9.
A general strategy to enable the formal anti-hydrozirconation of arylacetylenes is reported that merges cis-hydrometallation using the Schwartz Reagent (Cp2ZrHCl) with a subsequent light-mediated geometric isomerization at λ = 400 nm. Mechanistic delineation of the contra-thermodynamic isomerization step indicates that a minor reaction product functions as an efficient in situ generated photocatalyst. Coupling of the E-vinyl zirconium species with an alkyne unit generates a conjugated diene: this has been leveraged as a selective energy transfer catalyst to enable EZ isomerization of an organometallic species. Through an Umpolung metal–halogen exchange process (Cl, Br, I), synthetically useful vinyl halides can be generated (up to Z : E = 90 : 10). This enabling platform provides a strategy to access nucleophilic and electrophilic alkene fragments in both geometric forms from simple arylacetylenes.

A general strategy to enable the formal anti-hydrozirconation of arylacetylenes is reported that merges cis-hydrometallation using the Schwartz Reagent (Cp2ZrHCl) with a subsequent light-mediated geometric isomerization at λ = 400 nm.

The venerable Schwartz reagent (Cp2ZrHCl) is totemic in the field of hydrometallation,1 where reactivity is dominated by syn-selective M–H addition across the π-bond.2,3 This mechanistic foundation can be leveraged to generate well-defined organometallic coupling partners that are amenable to stereospecific functionalization. Utilizing terminal alkynes as readily available precursors,4 hydrozirconation constitutes a powerful strategy to generate E-configured vinyl nucleophiles that, through metal–halogen exchange, can be converted to vinyl electrophiles in a formal Umpolung process.5 Whilst this provides a versatile platform to access the electronic antipodes of the E-isomer, the mechanistic course of addition renders access to the corresponding Z-isomer conspicuously challenging. To reconcile the synthetic importance of this transformation with the intrinsic challenges associated with anti-hydrometallation and metallometallation,6 it was envisaged that a platform to facilitate geometric isomerization7 would be of value. Moreover, coupling this to a metal–halogen exchange would provide a simple Umpolung matrix to access both stereo-isomers from a common alkyne precursor (Fig. 1).Open in a separate windowFig. 1The stereochemical course of alkyne hydrometallation using the Schwartz reagent and an Umpolung platform to generate both stereo-isomers from a common alkyne precursor.Confidence in this conceptual blueprint stemmed from a report by Erker and co-workers, in which irradiating the vinyl zirconium species derived from phenyl acetylene (0.5 M in benzene) with a mercury lamp (Philips HPK 125 and Pyrex filter) induced geometric isomerization.8 Whilst Hg lamps present challenges in terms of safety, temperature regulation, cost and wavelength specificity, advances in LED technology mitigate all of these points. Therefore, a process of reaction development was initiated to generalize the anti-hydrozirconation of arylacetylenes. Crucial to the success of this venture was identifying the light-based activation mode that facilitates alkene isomerization. Specifically, it was necessary to determine whether this process was enabled by direct irradiation of the vinyl zirconium species, or if the EZ directionality results from a subsequent selective energy transfer process involving a facilitator. Several accounts of the incipient vinyl zirconium species reacting with a second alkyne unit to generate a conjugated diene have been disclosed.9,10 It was therefore posited that the minor by-product diene may be a crucial determinant in driving this isomerization (Fig. 2).Open in a separate windowFig. 2A working hypothesis for the light-mediated anti-hydrozirconation via selective energy transfer catalysis.To advance this working hypothesis and generalize the formal anti-hydrozirconation process, the reaction of Cp2ZrHCl with 1-bromo-4-ethynylbenzene (A-1) in CH2Cl2 was investigated ( for full details). This generates a versatile electrophile for downstream synthetic applications. Gratifyingly, after only 15 minutes, a Z : E-composition of 50 : 50 was reached (entry 1) and, following treatment with NBS, the desired vinyl bromide (Z)-1 was obtained in 76% yield (isomeric mixture) over the two steps. Further increasing the irradiation by 15 minute increments (entries 2–4) revealed that the optimum reaction time for the isomerization is 45 minutes (74%, Z : E = 73 : 27, entry 3). Extending the reaction time to 60 minutes (entry 4, 54%) did not lead to an improvement in selectivity and this was further confirmed by irradiating the reaction mixture for 90 minutes (entry 5). In both cases, a notable drop in yield was observed and therefore the remainder of the study was performed using the conditions described in entry 3. Next, the influence of the irradiation wavelength on the isomerization process was examined (entries 6–11). From a starting wavelength of λ = 369 nm, which gave a Z : E-ratio of 27 : 73 (entry 6), a steady improvement was observed by increasing the wavelength to λ = 374 nm (Z : E = 44 : 56, entry 7) and λ = 383 nm (Z : E = 53 : 47, entry 8). The selectivity reached a plateau at λ = 400 nm, with higher wavelengths proving to be detrimental (Z : E = 60 : 40 at λ = 414 nm, entry 9; Z : E = 26 : 74 at λ = 435 nm, entry 10). It is interesting to note that at λ = 520 nm, Z-1 was not detected by 1H NMR (entry 11).Reaction optimizationa
Entryλ [nm]Time [min]YieldbZ : E ratiob
14001576%50 : 50
24003072%68 : 32
34004574% (74%)74 : 26 (73 : 27)
44006054%73 : 27
54009049%73 : 27
63694566%27 : 73
73744561%44 : 56
83834564%53 : 47
94144567%60 : 40
104354572%26 : 74
115204567%<5 : 95
Open in a separate windowa(i) Cp2ZrHCl (62 mg, 0.24 mmol, 1.2 eq.), CH2Cl2 (1.5 mL), alkyne A-1 (36 mg, 0.2 mmol, 1.0 eq.) in CH2Cl2 (0.5 mL); (ii) irradiation; (iii) NBS (39 mg, 0.22 mmol, 1.1 eq.).baverage yield and Z : E ratio of two reactions determined by 1H-NMR with DMF as internal standard; isolated yield of the Z : E-mixture and Z : E-ratio in parentheses.Having identified standard conditions to enable a hydrozircononation/isomerization/bromination sequence, the scope and limitations of the method was explored using a range of electronically and structurally diverse phenylacetylenes (Fig. 3). This constitutes a net anti-Markovnikov hydrobromination of alkynes.11Open in a separate windowFig. 3Aromatic scope for the formal anti-hydrozirconation of terminal alkynes; reaction conditions: (i) Cp2ZrHCl (62 mg, 0.24 mmol, 1.2 eq.), CH2Cl2 (1.5 mL), alkyne A-1-17 (0.2 mmol, 1.0 eq.) in CH2Cl2 (0.5 mL), 15 min; (ii) irradiation (λ = 400 nm), 45 min; (iii) NBS (39 mg, 0.22 mmol, 1.1 eq.), 15 min; aisolated yield of Z : E-mixture as average of two reactions; b(i) Cp2ZrHCl (62 mg, 0.24 mmol, 1.2 eq.), CH2Cl2 (1.5 mL), alkyne A-15 (26 mg, 0.2 mmol, 1.0 eq.) in CH2Cl2 (0.5 mL); (ii) irradiation (λ = 400 nm), 45 min; (iii) PdPPh3 (7 mg, 0.006 mmol, 0.03 eq.) in THF (0.4 mL), BnBr (24 μL, 0.2 mmol, 1.0 eq.), rt, 18 h.12The introduction of halogen substituents in the 4-position proved to be compatible with the reaction conditions, enabling the formation of (Z)-1-4 in up to 81% yield (up to Z : E = 74 : 26). Interestingly, the introduction of the o-F (Z)-5 substituent led to a drop in the yield and selectivity: this is in stark contrast to cinnamoyl derivatives that have previously been examined in this laboratory.12 The m-Br proved to be less challenging enabling (Z)-6 to be generated smoothly (74%, Z : E = 67 : 33). The parent phenylacetylene (A-7) could be converted with a similar Z : E-ratio to (Z)-7 albeit less efficiently (36%, Z : E = 72 : 28). Electron donating groups in the para position such as (Z)-8-10 led to a general improvement in selectivity (up to 80%, Z : E = 81 : 19). Whereas methylation at the ortho-position compromised efficiency [(Z)-11, 37%, Z : E = 68 : 32], translocation to the meta-position led to a recovery in terms of yield and Z : E-ratio [(Z)-12, 71%, Z : E = 75 : 25]. Extending the π-system from phenyl to naphthyl enabled the generation of (Z)-13 90% and with a Z : E-ratio of 77 : 23. To enable a direct comparison of strongly and weakly donating groups on the reaction outcome the p-CF3 and p-OMe derivatives were examined. In the trifluoromethyl derivative (Z)-14 a decrease in yield (31%) and selectivity (Z : E = 48 : 52) was noted. In contrast, the para methoxy group in (Z)-15 led to an enhanced Z : E ratio of 86 : 14 (68% yield). This behavior was also observed with the trimethoxy derivative (Z)-16 (Z : E-ratio of 81 : 19). The piperonyl derivative performing similarly to the para methoxy derivative thereby enabling the formation of (Z)-17 with a Z : E-ratio of 85 : 15 (67% yield). Finally, to demonstrate the utility of the method, a direct transmetallation protocol was performed to intercept the Z-vinyl zirconium species with benzyl bromide.13 This enabled the synthesis of (Z)-18 in 67% yield.To demonstrate the compatibility of this platform with other common electrophiles, the deuterated, chlorinated and iodinated systems (Z)-19, -20 and -21 were prepared (Fig. 4). Yields and selectivities that are fully comparable with Fig. 3 were observed (up to 80% yield and Z : E = 80 : 20). Finally, to augment the photostationary composition further, a process of structural editing was conducted. It was envisaged that integrating a stabilizing non-covalent interaction in the Z-vinyl zirconium species may bias isomerization selectivity. Recent studies from this laboratory have established that a stabilizing interaction between the boron p-orbital and an adjacent non-bonding electron pair can be leveraged to induce a highly selective geometric isomerization of β-borylacrylates (Fig. 5, top).14Open in a separate windowFig. 4Scope of electrophiles for the formal anti-hydrozirconation; reaction conditions: (i) Cp2ZrHCl (62 mg, 0.24 mmol, 1.2 eq.), CH2Cl2 (1.5 mL), A-9 (36 mg, 0.2 mmol, 1.0 eq.) in CH2Cl2 (0.5 mL); (ii) irradiation (λ = 400 nm), 45 min; (iii) E+ (DCl, NCS or NIS) (0.22 mmol, 1.1 eq.), 15 min; isolated yields of the Z : E-mixture are reported.Open in a separate windowFig. 5Enhancing the selectivity of anti-hydrozirconation by leveraging a postulated nS → Zr interaction. Reaction conditions: (i) Cp2ZrHCl (62 mg, 0.24 mmol, 1.2 eq.), CH2Cl2 (1.5 mL), alkyne A-22-24 (0.2 mmol, 1.0 eq.) in CH2Cl2 (0.5 mL), rt, 15 min; (ii) irradiation (λ = 400 nm), 45 min; (iii) NBS (39 mg, 0.22 mmol, 1.1 eq.), rt, 15 min.Gratifyingly, the 5-bromo thiophenyl derivative (Z)-22 was generated with a Z : E ratio of 87 : 13 in 73% yield, and the unsubstituted derivative (Z)-23 was obtained in 41% yield higher selectivity (Z : E = 90 : 10). As a control experiment, the regioisomeric product (Z)-24 was prepared in which the sulfur atom is distal from the zirconium center. This minor alteration resulted in a conspicuous drop of selectivity (Z : E = 78 : 22), which is in line with the phenyl derivatives. Given the prominence of Frustrated-Lewis-Pairs (FLPs) in small molecule activation,15 materials such as (Z)-22 and (Z)-23 may provide a convenient starting point for the development of future candidates.To provide structural support for the formation of a Z-vinyl zirconium species upon irradiation at λ = 400 nm, the standard experiment was repeated in deuterated dichloromethane and investigated by 1H NMR spectroscopy. The spectra shown in Fig. 6 confirm the formation of transient E- and Z-vinyl zirconium species (E)-Zr1 and (Z)-Zr1 and are in good agreement with literature values.8 Diagnostic resonances of (E)-Zr1 include H1 at 7.76 ppm, whereas the analogous signal in (Z)-Zr1 is high field shifted to 6.33 ppm (Δδ(H1Z−E) = −1.43 ppm). In contrast, the H2 signal for (Z)-Zr1 appears at 7.56 ppm, which is at lower field compared to the H2 signal for (E)-Zr1 at 6.64 ppm (Δδ(H2Z−E) = 0.92 ppm). In the 13C-NMR spectra (see the ESI) the carbon signal of C1 and C2 are both low field shifted for (Z)-Zr1 compared to (E)-Zr1 (Δδ(C1Z−E) = 10.5 ppm and Δδ(C1Z-E) = 5.6 ppm).Open in a separate windowFig. 61H-NMR of the transient vinylzirconium species (E)-Zr1 (top) and (Z)-Zr1 (bottom).A computational analysis of the vinyl zirconium isomers (E)-Zr1 and (Z)-Zr1 revealed two low energy conformers for each geometry (Fig. 7. For full details see the ESI). These optimized structures served as a basis for more detailed excited state calculations using a time-dependent density functional theory (TDDFT) approach. These data indicate that isomerization of the styrenyl zirconium species by direct irradiation is highly improbable using λ = 400 nm LEDs. However, upon measuring the absorption spectrum of the reaction mixture (Fig. 8, bottom), the shoulder of a band reaching to the visible part of the spectrum is evident (for more details see the ESI). Furthermore, the fluorescence spectrum (Fig. 8, top) clearly shows light emission from the reaction mixture. Collectively, these data reinforce the working hypothesis that a minor reaction product functions as a productive sensitizer, thereby enabling the isomerization to occur via selective energy transfer.Open in a separate windowFig. 7A comparative analysis of (E)-Zr1 and (Z)-Zr1.Open in a separate windowFig. 8(Top) Fluorescence spectra of the reaction mixture before and after irradiation, and the diene 25 (c = 0.1 mm, irradiation at λ = 350 nm). (Bottom) Absorption spectra of the reaction mixture before and after irradiation (c = 0.1 mm), the alkyne A-1 and the diene 25 (c = 0.05 mm).As previously highlighted, phenylacetylenes are known to dimerize in the presence of Cp2Zr* based complexes.9,16 Therefore, to provide support for the involvement of such species, diene 25 was independently prepared and its absorption and emission spectra were compared with those of the reaction mixture (Fig. 8). The emission spectra of the reaction mixture and of diene 25 are closely similar. It is also pertinent to note that diene 25 was also detected in the crude reaction mixture by HRMS (see the ESI).Whilst the spectral measurements in Fig. 8 are in line with diene 25 functioning as an in situ photocatalyst, more direct support was desirable. Frustratingly, efforts to subject (E)-Zr-1 and (Z)-Zr-1 to standard Stern–Volmer quenching studies were complicated by difficulties in removing diene 25 from the samples. It was therefore envisaged that doping reactions with increasing quantities of diene 25 might be insightful. To that end, the hydrozirconation/isomerization sequence was performed with 0.5, 1.0 and 2.5 mol% of diene 25 and the reactions were shielded from light after 5 minutes. Analysis of the mixture by 1H NMR spectroscopy revealed a positive impact of 25 on the Z : E selectivity, (Z : E = 23 : 77, 24 : 76 and 30 : 70, respectively. Fig. 9, top). To further demonstrate the ability of diene 25 to act as an energy transfer catalyst for geometric isomerization, two model alkenes containing the styrenyl chromophore were exposed to the standard reaction conditions and the photostationary composition was measured after 45 min. Exposing trans-stilbene (E)-26 to the isomerization conditions furnished a Z : E photostationary composition of 44 : 56. Similarly, trans-β-methyl styrene (E)-27 could be isomerized to the cis-β-methyl styrene (Z)-27 with a Z : E ratio of 47 : 53. No isomerization was observed at λ = 400 nm in the absence of the catalyst. Whilst direct comparison with the isomerization of vinyl zirconium species must be made with caution, these experiments demonstrate that dienes such as 25 have the capacity to act as photosensitizers with styrenyl chromophores.Open in a separate windowFig. 9(Top) Exploring the impact of adding diene 25 as an external photocatalyst. (Bottom) Validating photosensitization of the styrenyl chromophore using diene 25.Collectively, these data support the hypothesis that isomerization does not result from direct irradiation alone,17 but that conjugated dienes, which are produced in small amounts, function as in situ energy transfer catalysts (Fig. 10). This antenna undergoes rapid inter-system crossing (ISC)18 to generate the triplet state and, upon energy transfer to the alkene fragment, returns to the ground state.19 This mechanistic study has guided the development of an operationally simple anti-hydrozirconation of alkynes that relies on inexpensive LED irradiation. Merging this protocol with a sequential metal–halogen exchange enables the formal anti-Markovnikov hydrobromination of alkynes11 and provides a sterodivergent platform to access defined alkene vectors from simple alkynes. This complements existing strategies to isomerize vinyl bromides,20 and circumvents the risks of vinyl cation formation and subsequent degradation.21 Finally, the selectivity of this geometric isomerization can be further augmented through the judicious introduction of stabilizing non-covalent interactions (up to Z : E = 90 : 10). It is envisaged that this selective, controlled geometric isomerization of an organometallic species will find application in contemporary synthesis. Furthermore, it contributes to a growing body of literature that describes the in situ formation of photoactive species upon irradiation.22Open in a separate windowFig. 10Postulated energy transfer catalysis cycle predicated on in situ formation of a conjugated diene photocatalyst.  相似文献   

10.
Graphdiyne polymers have interesting electronic properties due to their π-conjugated structure and modular composition. Most of the known synthetic pathways for graphdiyne polymers yield amorphous solids because the irreversible formation of carbon–carbon bonds proceeds under kinetic control and because of defects introduced by the inherent chemical lability of terminal alkyne bonds in the monomers. Here, we present a one-pot surface-assisted deprotection/polymerisation protocol for the synthesis of crystalline graphdiynes over a copper surface starting with stable trimethylsilylated alkyne monomers. In comparison to conventional polymerisation protocols, our method yields large-area crystalline thin graphdiyne films and, at the same time, minimises detrimental effects on the monomers like oxidation or cyclotrimerisation side reactions typically associated with terminal alkynes. A detailed study of the reaction mechanism reveals that the deprotection and polymerisation of the monomer is promoted by Cu(ii) oxide/hydroxide species on the as-received copper surface. These findings pave the way for the scalable synthesis of crystalline graphdiyne-based materials as cohesive thin films.

We present a one-pot deprotection/polymerisation protocol for the synthesis of crystalline graphdiynes on top of a copper surface starting with stable trimethylsilylated alkyne monomers.   相似文献   

11.
Herein we report an intermolecular propargylic C–H amination of alkynes. This reaction is operationally convenient and requires no transition metal catalysts or additives. Terminal, silyl, and internal alkynes bearing a wide range of functional groups can be aminated in high yields. The regioselectivity of amination for unsymmetrical internal alkynes is strongly influenced by substitution pattern (tertiary > secondary > primary) and by relatively remote heteroatomic substituents. We demonstrate that amination of alkynes bearing α-stereocenters occurs with retention of configuration at the newly-formed C–N bond. Competition experiments between alkynes, kinetic isotope effects, and DFT calculations are performed to confirm the mechanistic hypothesis that initial ene reaction of a selenium bis(imide) species is the rate- and product-determining step. This ene reaction has a transition state that results in substantial partial positive charge development at the carbon atom closer to the amination position. Inductive and/or hyperconjugative stabilization or destabilization of this positive charge explains the observed regioselectivities.

Selenium catalysis enables a general intermolecular propargylic C–H amination of alkynes. The concerted mechanism gives rise to high regioselectivity for the more electron-rich end of the alkyne and retention of the C–H propargylic stereocenter.  相似文献   

12.
We report the development of an operationally straigtforward, visible-light-mediated multicomponent strategy for the construction of β-trifluoromethylated tertiary alkylamines from feedstock aldehydes, secondary amines and a convenient source of trifluoromethyl iodide. The new process does not require a photocatalyst, is metal-free, displays a broad functional group tolerance and offers rapid, one-pot access to trifluoromethylated drug-like compounds that will be of interest in medicinal chemistry.

An operationally straightforward, visible-light-mediated multicomponent strategy for the construction of β-trifluoromethylated tertiary alkylamines from aldehydes, secondary amines and a convenient source of trifluoromethyl iodide is reported.  相似文献   

13.
A copper-catalyzed asymmetric intramolecular reductive cyclization for the synthesis of dibenzo[b,d]azepines is described. Use of 2′-vinyl-biaryl-2-imines as substrates and in situ formed [CuI/(Ph-BPE)] as the catalyst enables the synthesis of 7-membered bridged biarylamines containing both central and axial stereogenic elements in high yields (up to 98%) and with excellent diastereo- and enantioselectivities (>20 : 1 d.r., up to 99% ee). Moreover, the same catalyst was found to facilitate a related borylative cyclization to afford versatile boronic ester derivatives. Both reactions proceed under mild conditions (rt) and are applicable to a variety of substituted aromatic and heterocyclic derivatives.

Dibenzo[b,d]azepines featuring axially chiral 7-member-bridged biaryls have been prepared by asymmetric reductive or borylative cyclizations using copper catalysis.  相似文献   

14.
The regio- and stereoselective addition of C(1)-ammonium enolates – generated in situ from aryl esters and the isothiourea catalyst (R)-BTM – to pyridinium salts bearing an electron withdrawing substituent in the 3-position allows the synthesis of a range of enantioenriched 1,4-dihydropyridines. This represents the first organocatalytic approach to pyridine dearomatisation using pronucleophiles at the carboxylic acid oxidation level. Optimisation studies revealed a significant solvent dependency upon product enantioselectivity, with only toluene providing significant asymmetric induction. Using DABCO as a base also proved beneficial for product enantioselectivity, while investigations into the nature of the counterion showed that co-ordinating bromide or chloride substrates led to higher product er than the corresponding tetrafluoroborate or hexafluorophosphate. The scope and limitations of this process are developed, with enantioselective addition to 3-cyano- or 3-sulfonylpyridinium salts giving the corresponding 1,4-dihydropyridines (15 examples, up to 95 : 5 dr and 98 : 2 er).

The regio- and stereoselective addition of C(1)-ammonium enolates – generated in situ from aryl esters and the isothiourea catalyst (R)-BTM – to pyridinium salts allows the synthesis of a range of enantioenriched 1,4-dihydropyridines.  相似文献   

15.
Chiral, substituted cyclobutanes are common motifs in bioactive compounds and intermediates in organic synthesis but few asymmetric routes for their synthesis are known. Herein we report the Rh-catalyzed asymmetric hydrometallation of a range of meso-cyclobutenes with salicylaldehydes. The ortho-phenolic group promotes hydroacylation and can be used as a handle for subsequent transformations. The reaction proceeds via asymmetric hydrometallation of the weakly activated cyclobutene, followed by a C–C bond forming reductive elimination. A prochiral, spirocyclic cyclobutene undergoes a highly regioselective hydroacylation. This report will likely inspire the development of other asymmetric addition reactions to cyclobutenes via hydrometallation pathways.

Chiral, substituted cyclobutanes are common motifs in bioactive compounds and intermediates in organic synthesis but few asymmetric routes for their synthesis are known.  相似文献   

16.
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3′-, 3,2′- and 3,1′-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C–H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL−1).

A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution.  相似文献   

17.
Development of efficient and stereoselective synthesis of prostaglandins (PGs) is of utmost importance, owing to their valuable medicinal applications and unique chemical structures. We report here a unified synthesis of PGs cloprostenol, bimatoprost, PGF, fluprostenol, and travoprost from the readily available dichloro-containing bicyclic ketone 6a guided by biocatalytic retrosynthesis, in 11–12 steps with 3.8–8.4% overall yields. An unprecedented Baeyer–Villiger monooxygenase (BVMO)-catalyzed stereoselective oxidation of 6a (99% ee), and a ketoreductase (KRED)-catalyzed diastereoselective reduction of enones 12 (87 : 13 to 99 : 1 dr) were utilized in combination for the first time to set the critical stereochemical configurations under mild conditions. Another key transformation was the copper(ii)-catalyzed regioselective p-phenylbenzoylation of the secondary alcohol of diol 10 (9.3 : 1 rr). This study not only provides an alternative route to the highly stereoselective synthesis of PGs, but also showcases the usefulness and great potential of biocatalysis in construction of complex molecules.

We report a unified chemoenzymatic asymmetric synthesis of five prostaglandins, featuring two enzymatic redox transformations and a copper(ii)-catalyzed regioselective p-phenylbenzoylation.  相似文献   

18.
Tertiary phosphines(iii) find widespread use in many aspects of synthetic organic chemistry. Herein, we developed a facile and novel electrochemical oxidative N–H/P–H cross-coupling method, leading to a series of expected tertiary phosphines(iii) under mild conditions with excellent yields. It is worth noting that this electrochemical protocol features very good reaction selectivity, where only a 1 : 1 ratio of amine and phosphine was required in the reaction. Moreover, this electrochemical protocol proved to be practical and scalable. Mechanistic insights suggested that the P radical was involved in this reaction.

A facile and novel electrochemical oxidative N–H/P–H cross-coupling method for obtaining tertiary phosphines(iii) was developed.  相似文献   

19.
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.

A new class of phosphorus-containing 1,3-dipoles has been developed, which, when coupled with cycloaddition, offers modular synthesis of furans with independent control of all four substituents.  相似文献   

20.
Sonogashira coupling represents an indispensable tool for the preparation of organic materials that contain C(sp)–C(sp2) bonds. Improving the efficiency and generality of this methodology has long been an important research subject in materials science. Here, we show that a high-temperature ball-milling technique enables the highly efficient palladium-catalyzed Sonogashira coupling of solid aryl halides that bear large polyaromatic structures including sparingly soluble substrates and unactivated aryl chlorides. In fact, this new protocol provides various materials-oriented polyaromatic alkynes in excellent yield within short reaction times in the absence of bulk reaction solvents. Notably, we synthesized a new luminescent material via the mechanochemical Sonogashira coupling of poorly soluble Vat Red 1 in a much higher yield compared to those obtained using solution-based conditions. The utility of this method was further demonstrated by the rapid synthesis of a fluorescent metal–organic framework (MOF) precursor via two sequential mechanochemical Sonogashira cross-coupling reactions. The present study illustrates the great potential of Sonogashira coupling using ball milling for the preparation of materials-oriented alkynes and for the discovery of novel functional materials.

Using a high-temperature ball-milling technique, a practical mechanochemical protocol for the Sonogashira cross-coupling of polyaromatic halides was achieved, which provides efficient access to materials-oriented aromatic alkynes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号