首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloy formation is ubiquitous in inorganic materials science, and it strongly depends on the similarity between the alloyed atoms. Since molecules have widely different shapes, sizes and bonding properties, it is highly challenging to make alloyed molecular crystals. Here we report the generation of homogenous molecular alloys of organic light emitting diode materials that leads to tuning in their bandgaps and fluorescence emission. Tris(8-hydroxyquinolinato)aluminium (Alq3) and its Ga, In and Cr analogues (Gaq3, Inq3, and Crq3) form homogeneous mixed crystal phases thereby resulting in binary, ternary and even quaternary molecular alloys. The MxM′(1−x)q3 alloy crystals are investigated using X-ray diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy on single crystal samples, and photoluminescence properties are measured on the exact same single crystal specimens. The different series of alloys exhibit distinct trends in their optical bandgaps compared with their parent crystals. In the AlxGa(1−x)q3 alloys the emission wavelengths lie in between those of the parent crystals, while the AlxIn(1−x)q3 and GaxIn(1−x)q3 alloys have red shifts. Intriguingly, efficient fluorescence quenching is observed for the MxCr(1−x)q3 alloys (M = Al, Ga) revealing the effect of paramagnetic molecular doping, and corroborating the molecular scale phase homogeneity.

Multicomponent molecular alloy crystals exhibit intriguing effects of tuning and quenching in their photoluminescence, suggesting ‘alloy-crystal engineering’ as a useful design strategy for molecular functional materials.  相似文献   

2.
An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal. The introduction of simple M+X salts such as Na+PF6 and K+I into the ionic channel of 1 enhanced the ionic conductivity of the Colh phase of the M+·(1)·X salts, with the highest ionic conductivity reaching ∼10−6 S cm−1 for K+·(1)·I and Na+·(1)·PF6 at 460 K, which was approximately 5 orders of magnitude higher than that of 1. The introduction of non-ferroelectric 1 into the ferroelectric N,N′,N′′-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC) elicited a ferroelectric response from the mixed Colh phase of (3BC)x(1)1−x with x = 0.9 and 0.8. The further doping of M+X into the ferroelectric Colh phase of (3BC)0.9(1)0.1 enhanced the ferroelectric polarisation assisted by ion displacement in the half-filled ionic channel for the vacant dibenzo[18]crown-6 of (3BC)0.9[(M+)0.5·(1)·(X)0.5]0.1.

An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal.  相似文献   

3.
Alloy nanoparticles represent one of the most important metal materials, finding increasing applications in diverse fields of catalysis, biomedicine, and nano-optics. However, the structural evolution of bimetallic nanoparticles in their full composition spectrum has been rarely explored at the molecular and atomic levels, imparting inherent difficulties to establish a reliable structure–property relationship in practical applications. Here, through an inter-particle reaction between [Au44(SR)26]2− and [Ag44(SR)30]4− nanoparticles or nanoclusters (NCs), which possess the same number of metal atoms, but different atomic packing structures, we reveal the composition-dependent structural evolution of alloy NCs in the alloying process at the molecular and atomic levels. In particular, an inter-cluster reaction can produce three sets of AuxAg44−x NCs in a wide composition range, and the structure of AuxAg44−x NCs evolves from Ag-rich [AuxAg44−x(SR)30]4− (x = 1–12), to evenly mixed [AuxAg44−x(SR)27]3− (x = 19–24), and finally to Au-rich [AuxAg44−x(SR)26]2− (x = 40–43) NCs, with the increase of the Au/Ag atomic ratio in the NC composition. In addition, leveraging on real-time electrospray ionization mass spectrometry (ESI-MS), we reveal the different inter-cluster reaction mechanisms for the alloying process in the sub-3-nm regime, including partial decomposition–reconstruction and metal exchange reactions. The molecular-level inter-cluster reaction demonstrated in this study provides a fine chemistry to customize the composition and structure of bimetallic NCs in their full alloy composition spectrum, which will greatly increase the acceptance of bimetallic NCs in both basic and applied research.

An inter-particle reaction between atomically precise [Au44(SR)26]2− (SR = thiolate) and [Ag44(SR)30]4− nanoparticles reveals the composition-dependent structural evolution of alloy AuxAg44−x nanoparticles at the atomic level.  相似文献   

4.
The first families of alkaline-earth stannylides [Ae(SnPh3)2·(thf)x] (Ae = Ca, x = 3, 1; Sr, x = 3, 2; Ba, x = 4, 3) and [Ae{Sn(SiMe3)3}2·(thf)x] (Ae = Ca, x = 4, 4; Sr, x = 4, 5; Ba, x = 4, 6), where Ae is a large alkaline earth with direct Ae–Sn bonds, are presented. All complexes have been characterised by high-resolution solution NMR spectroscopy, including 119Sn NMR, and by X-ray diffraction crystallography. The molecular structures of [Ca(SnPh3)2·(thf)4] (1′), [Sr(SnPh3)2·(thf)4] (2′), [Ba(SnPh3)2·(thf)5] (3′), 4, 5 and [Ba{Sn(SiMe3)3}2·(thf)5] (6′), most of which crystallised as higher thf solvates than their parents 1–6, were established by XRD analysis; the experimentally determined Sn–Ae–Sn′ angles lie in the range 158.10(3)–179.33(4)°. In a given series, the 119Sn NMR chemical shifts are slightly deshielded upon descending group 2 from Ca to Ba, while the silyl-substituted stannyls are much more shielded than the phenyl ones (δ119Sn/ppm: 1′, −133.4; 2′, −123.6; 3′, −95.5; 4, −856.8; 5, −848.2; 6′, −792.7). The bonding and electronic properties of these complexes were also analysed by DFT calculations. The combined spectroscopic, crystallographic and computational analysis of these complexes provide some insight into the main features of these unique families of homoleptic complexes. A comprehensive DFT study (Wiberg bond index, QTAIM and energy decomposition analysis) points at a primarily ionic Ae–Sn bonding, with a small covalent contribution, in these series of complexes; the Sn–Ae–Sn′ angle is associated with a flat energy potential surface around its minimum, consistent with the broad range of values determined by experimental and computational methods.

The complete series of heterobimetallic alkaline-earth distannyls [Ae{SnR3}2·(thf)x] (Ae = Ca, Sr, Ba) have been prepared for R = Ph and SiMe3, and their bonding and electronic properties have been comprehensively investigated.  相似文献   

5.
The subsolidus phase composition of the M2O-CdO-V2O5 systems with M = Li or Na is studied. Double orthovanadates MCdVO4 and MCd4(VO4)3 form solid solutions of composition Li1 ? 2x/3Cd x/3CdVO4 (0 ≤ x ≤ 1, orthorhombic space group Cmcm, modulation at x = 0.6) and Na3 ? 2x Cd3 + x (VO4)3 (0 ≤ x ≤ 0.10 and 0.30 ≤ x ≤ 1, orthorhombic space group Cmcm and Pn21 a or Pnma, respectively). In the range 0.10 < x < 0.30, the end-members of the solid solutions coexist. Isothermal sections of the systems are mapped.  相似文献   

6.
Tin halide perovskites are promising candidates for lead-free photovoltaic and optoelectronic materials, but not all of them have been well characterized. It is essential to determine how the bulk photophysical properties are correlated with their structures at both short and long ranges. Although CsSnCl3 is normally stable in the cubic perovskite structure only above 379 K, it was prepared as a metastable phase at room temperature. The transition from the cubic to the monoclinic phase, which is the stable form at room temperature, was tracked by solid-state 133Cs NMR spectroscopy and shown to take place through a first-order kinetics process. The complete solid solution CsSn(Cl1−xBrx)3 (0 ≤ x ≤ 1) was successfully prepared, exhibiting cubic perovskite structures extending between the metastable CsSnCl3 and stable CsSnBr3 end-members. The NMR spectra of CsSnBr3 samples obtained by three routes (high-temperature, mechanochemical, and solvent-assisted reactions) show distinct chemical shift ranges, spin-lattice relaxation parameters and peak widths, indicative of differences in local structure, defects and degree of crystallinity within these samples. Variable-temperature 119Sn spin-lattice relaxation measurements reveal spontaneous mobility of Br atoms in CsSnBr3. The degradation of CsSnBr3, exposed to an ambient atmosphere for nearly a year, was monitored by NMR spectroscopy and powder X-ray diffraction, as well as by optical absorption spectroscopy.

Unravelling the atomic-level chemical structure, slow phase conversion or degradation pathways and rapid halogen hopping of cesium tin(ii) halide perovskites using solid-state 119Sn and 133Cs NMR spectroscopy.  相似文献   

7.
CdRE2S4 (RE = Gd, Tb, Dy, Ho, Er, Tm, and Yb) and Mg(GdxYb1?x)2S4 were prepared by solid-state reactions. All the cadmium-containing compounds are cubic, i.e., the Th3P4 structure for Gd, Tb, and Dy and the spinel type for all the others. The first three compounds were deficient in CdS. In the case of the Mg system, for x = 1 the system is cubic Th3P4, for x = 0 cubic spinel, and for 0 < x < 1 orthorhombic MnY2S4 (Cmc21). All the materials studied are paramagnetic above 77 K. Below 77 K in the magnesium family both cubic materials are paramagnetic down to 4.2 K and the orthorhombic materials show magnetic ordering. In the cadmium family all but CdTm2S4 show exchange coupling.  相似文献   

8.
9.
La3LiMn1−xTixO7 (0 ≤ x ≤ 0.05) samples were synthesized by a solid-state reaction method, and a single-phase form was observed for the samples in the range of x ≤ 0.03. Crystal structure, optical properties, and color of the La3LiMn1−xTixO7 (0 ≤ x ≤ 0.03) samples were characterized. Strong optical absorption was observed at a wavelength between 400 and 550 nm, and a shoulder absorption peak also appeared around 690 nm in all samples; orange colors were also exhibited. Among the samples synthesized, the most brilliant orange color was obtained at La3LiMn0.97Ti0.03O7. The redness (a*) and yellowness (b*) values of this pigment were higher than those of the commercially available orange pigments. Therefore, the orange color of this pigment is brighter than those of the commercial products. Since the La3LiMn0.97Ti0.03O pigment is composed of non-toxic elements, it could be a new environmentally friendly inorganic orange pigment.  相似文献   

10.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

11.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   

12.
Perovskite-type lithium ionic conductors were explored in the (LixLa1−x/3)ScO3 system following their syntheses via a high-pressure solid-state reaction. Phase identification indicated that a solid solution with a perovskite-type structure was formed in the range 0 ≤ x < 0.6. When x = 0.45, (Li0.45La0.85)ScO3 exhibited the highest ionic conductivity and a low activation energy. Increasing the loading of lithium as an ionic diffusion carrier expanded the unit cell volume and contributed to the higher ionic conductivity and lower activation energy. Cations with higher oxidation numbers were introduced into the A/B sites to improve the ionic conductivity. Ce4+ and Zr4+ or Nb5+ dopants partially substituted the A-site (La/Li) and B-site Sc, respectively. Although B-site doping produced a lower ionic conductivity, A-site Ce4+ doping improved the conductive properties. A perovskite-type single phase was obtained for (Li0.45La0.78Ce0.05)ScO3 upon Ce4+ doping, providing a higher ionic conductivity than (Li0.45La0.85)ScO3. Compositional analysis and crystal-structure refinement of (Li0.45La0.85)ScO3 and (Li0.45La0.78Ce0.05)ScO3 revealed increased lithium contents and expansion of the unit cell upon Ce4+ co-doping. The highest ionic conductivity of 1.1 × 10−3 S cm−1 at 623 K was confirmed for (Li0.4Ce0.15La0.67)ScO3, which is more than one order of magnitude higher than that of the (LixLa1−x/3)ScO3 system.  相似文献   

13.
14.
High-temperature electrical conductivity measurements, structural data from powder X-ray diffraction and 57Fe Mössbauer spectroscopy were combined to study the interrelationship of oxygen ion transport and p- and n-type transport in Sr2(Fe1−xGax)2O5, where x=0, 0.1 and 0.2. Although gallium substitution generally decreases the total ion-electron transport, the transition of the orthorhombic brownmillerite structure to a cubic phase on heating results in the recurrence of the conductivity to the same high level as in the parent ferrite (x=0). The changes of the partial contributions to the total conductivity as a function of x are shown to reflect a complicated interplay of the disordering processes that develop in the oxygen sublattice on heating in response to replacement of iron with gallium.  相似文献   

15.
A diimine ligand having two [2.2]paracyclophanyl substituents at the N atoms (L1) was prepared from the reaction of amino[2.2]paracyclophane with acenaphtenequinone. The ligand reacts with NiBr2(dme) (dme: 1,2-dimethoxyethane) to form the dibromonickel complex with (R,R) and (S,S) configuration, NiBr2(L1). The structure of the complex was confirmed by X-ray crystallography. NiBr2(L1) catalyzes oligomerization of ethylene in the presence of methylaluminoxane (MAO) co-catalyst at 10–50 °C to form a mixture of 1- and 2-butenes after 3 h. The reactions for 6 h and 8 h at 25 °C causes further increase of 2-butene formed via isomerization of 1-butene and formation of hexenes. Reaction of 1-hexene catalyzed by NiBr2(L1)–MAO produces 2-hexene via isomerization and C12 and C18 hydrocarbons via oligomerization. Consumption of 1-hexene of the reaction obeys first-order kinetics. The kinetic parameters were obtained to be ΔG = 93.6 kJ mol−1, ΔH = 63.0 kJ mol−1, and ΔS = −112 J mol−1deg−1. NiBr2(L1) catalyzes co-dimerization of ethylene and 1-hexene to form C8 hydrocarbons with higher rate and selectivity than the tetramerization of ethylene.  相似文献   

16.
The results of variable temperature powder X-ray diffraction and differential thermal analysis (DTA) studies on the orthorhombic (α) low-cristobalite to cubic (β) high-cristobalite phase transition for Al1−xGaxPO4, (0.00?x?1.00) are presented. These studies reveal that all these compositions undergo reversible phase transitions from orthorhombic to cubic form at higher temperature. The high-temperature behavior of GaPO4 is observed to have a different behavior compared to all other compositions in this series. Orthorhombic low-cristobalite-type GaPO4 transforms to cubic high-cristobalite form at ∼605 °C. Above ∼700 °C, the cubic high-cristobalite-type GaPO4 slowly transforms to trigonal quartz type structure. At about 960 °C, the quartz type GaPO4 transforms back to the cubic high-cristobalite form. During cooling cycles the cubic phase of GaPO4 reverts to trigonal quartz type phase. However, annealing of GaPO4 at higher temperatures for longer duration can stabilize the orthorhombic low cristobalite phase. The phase transition temperatures and associated enthalpies are related to the change in unit cell volume and the orthorhombicity of the respective low cristobalite lattice.  相似文献   

17.
We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate–alkoxide (POV–alkoxide) clusters, [V6O6(OSiMe3)(OMe)12]n (n = 1−, 2−), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide, respectively. Installation of a siloxide moiety on the surface of the Lindqvist core was accomplished via addition of trimethylsilyl trifluoromethylsulfonate to the fully-oxygenated cluster [V6O7(OMe)12]2−. Characterisation of [V6O6(OSiMe3)(OMe)12]1− by X-ray photoelectron spectroscopy reveals that the incorporation of the siloxide group does not result in charge separation within the hexavanadate assembly, an observation that contrasts directly with the behavior of clusters bearing substitutional dopants. The reduced assembly, [V6O6(OSiMe3)(OMe)12]2−, provides an isoelectronic model for H-doped VO2, with a vanadium(iii) ion embedded within the cluster core. Notably, structural analysis of [V6O6(OSiMe3)(OMe)12]2− reveals bond perturbations at the siloxide-functionalised vanadium centre that resemble those invoked upon H-atom uptake in VO2 through ab initio calculations. Our results offer atomically precise insight into the local structural and electronic consequences of the installation of hydrogen-atom-like dopants in VO2, and challenge current perspectives of the operative mechanism of electron–proton co-doping in these materials.

We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate–alkoxide clusters, [V6O6(OSiMe3)(OMe)12]n (n = 1, 2), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide.  相似文献   

18.
Nitric oxide (NO) is an important signaling molecule in biological systems, and as such, the ability of porous materials to reversibly adsorb NO is of interest for potential medical applications. Although certain metal–organic frameworks are known to bind NO reversibly at coordinatively unsaturated metal sites, the influence of the metal coordination environment on NO adsorption has not been studied in detail. Here, we examine NO adsorption in the frameworks Co2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole) and Co2(OH)2(bbta) using gas adsorption, infrared spectroscopy, powder X-ray diffraction, and magnetometry. At room temperature, NO adsorbs reversibly in Co2Cl2(bbta) without electron transfer, with low temperature data supporting spin-crossover of the NO-bound cobalt(ii) centers of the material. In contrast, adsorption of low pressures of NO in Co2(OH)2(bbta) is accompanied by charge transfer from the cobalt(ii) centers to form a cobalt(iii)–NO adduct, as supported by diffraction and infrared spectroscopy data. At higher pressures of NO, characterization data indicate additional uptake of the gas and disproportionation of the bound NO to form a cobalt(iii)–nitro (NO2) species and N2O gas, a transformation that appears to be facilitated by secondary sphere hydrogen bonding interactions between the bound NO2 and framework hydroxo groups. These results provide a rare example of reductive NO binding in a cobalt-based metal–organic framework, and they demonstrate that NO uptake can be tuned by changing the primary and secondary coordination environment of the framework metal centers.

Nitric oxide (NO) shows differences in adsorption and reactivity in two related cobalt(ii)–triazolate frameworks, demonstrating how the primary and secondary coordination sphere of metal centers in adsorbents can be designed for targeted delivery.  相似文献   

19.
《Solid State Sciences》2007,9(8):693-698
Structures, thermal expansion properties and phase transitions of ErxFe2−x(MoO4)3 (0.0  x  2.0) have been investigated by X-ray diffraction and differential thermal analysis. The partial substitution of Er3+ for Fe3+ induces pronounced decreases in the phase transition temperature from monoclinic to orthorhombic structure. Rietveld analysis of the XRD data shows that both the monoclinic and orthorhombic Fe2(MoO4)3, as well as the orthorhombic ErxFe2−x(MoO4)3 (x  0.8) have positive thermal expansion coefficients. However, the linear thermal expansion coefficients of ErxFe2−x(MoO4)3 (x = 0.6–2.0) decrease with increasing content of Er3+ and for x  1.0, compounds ErxFe2−x(MoO4)3 show negative thermal expansion properties. Attempts for making zero thermal expansion coefficient materials result in that very low negative thermal expansion coefficient of −0.60 × 10−6/°C in Er1.0Fe1.0(MoO4)3 is observed in the temperature range of 180–400 °C, and zero thermal expansion is observed in Er0.8Fe1.2(MoO4)3 in the temperature range of 350–450 °C. In addition, anisotropic thermal expansions are found for all the orthorhombic ErxFe2−x(MoO4)3 compounds, with negative thermal expansion coefficients along the a axes.  相似文献   

20.
Oxide-derived copper (OD-Cu) has been discovered to be an effective catalyst for the electroreduction of CO2 to C2+ products. The structure of OD-Cu and its surface species during the reaction process are interesting topics, which have not yet been clearly discussed. Herein, in situ surface-enhanced Raman spectroscopy (SERS), operando X-ray absorption spectroscopy (XAS), and 18O isotope labeling experiments were employed to investigate the surface species and structures of OD-Cu catalysts during CO2 electroreduction. It was found that the OD-Cu catalysts were reduced to metallic Cu(0) in the reaction. CuOx species existed on the catalyst surfaces during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO) on Cu instead of on the active sites of the catalyst. It was also found that abundant interfaces can be produced on OD-Cu, which can provide heterogeneous CO adsorption sites (strong binding sites and weak binding sites), leading to outstanding performance for obtaining C2+ products. The Faradaic efficiency (FE) for C2+ products reached as high as 83.8% with a current density of 341.5 mA cm−2 at −0.9 V vs. RHE.

CuOx species were shown to exist on OD-Cu during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO) on Cu instead of on the active sites of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号