首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用实时红外光谱仪(RT-FTIR)研究了单体结构、单体配比以及活性稀释剂结构对樟脑醌(CQ)/胡椒环(BDO)引发的光聚合动力学的影响,结果发现,UDMA虽然黏度较低,但是易发生链转移反应且在聚合体系中含量较高(70 wt%),可作为氢给体猝灭激发态CQ,从而影响CQ和BDO之间的相互作用.Bis-GMA虽然黏度大,但是反应活性高,当其与少量具有给氢能力的活性稀释剂TEGDMA配合使用时,不仅对聚合体系的反应活性影响较小,而且可显著降低体系的黏度,大大提高自由基的活动能力,有利于改善CQ/BDO的引发活性.  相似文献   

2.
Thermal degradation kinetics of copolymers based on bis-phenol A ethoxylated dimethacrylate (Bis-EMA) with triethylene glycol dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA) with TEGDMA in wt/wt ratios 30/70, 50/50, or 70/30 were investigated using thermogravimetric analysis as a means to provide specific information regarding the internal structures of these resins. Thermogravimetric scans were taken at four different heating rates to perform an isoconversional analysis to determine the change of the effective activation energy as a function of conversion. A two-step degradation mechanism was found to occur in almost all copolymer compositions attributed to the existence of inhomogeneities in the macromolecular structure and the formation of weak links inside the polymeric network.  相似文献   

3.
The object of this study was to synthesize, characterize and evaluate several new dimethacrylate monomers, in order to discover new compositions for possible formulation of improved dental restoratives. Dimethacrylates derived from the 3,3,5‐trimethylcyclohexan‐1‐one–phenol reaction products were prepared and characterized by Fourier transform infrared and nuclear magnetic resonance. Thermal‐ and photopolymerization characteristics of these experimental monomers, in blends with triethyleneglycol dimethacrylate (TEGDMA), were evaluated by differential scanning calorimetry and differential photocalorimetry. An additional dimethacrylate derived from the 3,3,5‐trimethylcyclohexanone–phenol adduct, supplied by Bayer AG, was also evaluated during the study. A control for comparison consisted of a 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy‐propyl) phenyl]propane (BisGMA) blend with TEGDMA. It was found that the polymerization behavior and properties of the visible light‐cured neat resins were dependent on their chemical structures. The experimental resins exhibited comparable curing characteristics, lower water sorption, higher wet glass transition temperature, and other improved properties, compared with the polymerized BisGMA/TEGDMA control. The more rigid and hydrophobic nature of the experimental resins, accomplished by incorporation of the bulky trimethyl‐substituted cyclohexyl moiety in the novel dimethacrylates, was considered to be the major factor contributing to the improved properties. These new dimethacrylates, for formulating thermosets with lower water sorption and higher glass transition temperature, may offer a path to improving composites for a variety of applications, including such things as dental restoratives and bone cements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Summary A simple and sensitive method for the determination of trace amounts of bisphenol-A (BPA), bisphenol-A diglycidyl dimethacrylate (bis-GMA), bisphenol-A dimethacrylate (bis-DMA) and triethyleneglycol dimethacrylate (TEGDMA) in human saliva is proposed. These materials are used in dental restorations, as composites and sealants, and are sometimes detected in human saliva after dental treatment. The proposed method involves protein precipitation using acetonitrile followed by acidification, evaporation of the solvent and dissolution with dichloromethane prior to injection into a GC-MS. Thermal derivatization in the injection system was used for the identification and quantification of bis-GMA. Clean-up is not necessary using SIM mode. Bisphenol-F (BPF) was used as internal standard. The linear range was 15 to 1000 μg·L−1 for BPA, 50 to 10 000 μg·L−1 for bis-GMA, 50 to 1000 μg·L−1 for bis-DMA and 1 to 100 μg·L−1 for TEGDMA. The detection limits were 3,15,10 and 0.3 μg·L−1 for BPA, bis-GMA, bis-DMA and TEGD-MA, respectively. Validation of the proposed method was carried out by using the standard addition methodology. Samples of 10 mL of human saliva collected 1 h after dental treatment were analysed in order to assess the applicability of the method to detect and quantify such compounds originated from methacrylic resins used in odontological treatment.  相似文献   

5.
In this third work, we evaluated the degree of conversion (DC) versus depth of dental filling composite named Prodigy Condensable™ using infrared spectroscopy. Confirming previous results, there was a gradual reduction of DC with increasing depth but the composite exhibited extreme values of DC, an upper value (45.9%) on the surface and a lower one (6.1%) at a depth of 5 mm. The composite presented the worst performance among materials studied. The composite formulation was 80% of inorganic fillers and BisfenolA/dimethacrylate (BisGMA) (18%)/triethyleneglycoldimethacrylate (TEGDMA) (2.0%) as monomers. As stated before, type/ratio/viscosity of monomers and type, amount, size and size distribution of fillers all together had an important role in the cure reaction contributing to the final performance of the composite.  相似文献   

6.
Biodegradable trifunctional oligomer was synthesized from polycaprolactone and glutamic acid and characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. Injectable and in situ crosslinkable polymer networks were fabricated by the copolymerization of oligomer with triethylene glycol dimethacrylate (TEGDMA) and used to evaluate the initial compressive strengths, viscosities, shrinkages, thermal stabilities, and biodegradabilities in the forms of polymer network neat resin and their composites with β‐tricalcium phosphate. The initial compressive strengths (CS) values of neat resins ranged from 9.54 to 187.6 MPa. Both neat resins and composites had polymerization shrinkage ranging from 0% to 11.7%, which increased with increasing of TEGDMA contents in resin. Moreover, in polymer composite resins, shrinkage values decreased with increasing filler level from 0% to 4.6%, and exothermic evolution values decreased from 33.5°C to 29.7°C as increasing filler level. The composite with the formulation of (polycaprolactone)‐glutamate triacrylate (PCLGTA)/TEGDMA (25/75) and powder/liquid (P/L) ratio of 1.0 exhibited the highest exothermal and lowest shrinkage values. The increase of oligomer in the formulation led to an increase in viscosity.  相似文献   

7.
The purpose of this research is to demonstrate the usefulness of the synthesized hyperbranched multi-methacrylates (H-MMAs) in dental applications. We synthesized three hyperbranched multi-methacrylate oligomers and evaluated them as modifiers for use in the dental resin system: bisphenol A glycidyl dimethacrylate (BisGMA)/tri(ethylene glycol) dimethacrylate (TEGDMA). Their photo-polymerization activities, viscosity, mechanical properties, such as compression, diametral tensile, and flexural strength, were evaluated. H-MMAs (10%) modified dental resins have lower polymerization shrinkage and about 15% increase in mechanical strength compared to the Bis-BisGMA control. For example, H30-MMA has compressive, diametral tensile, and flexural strength of 576, 47, and 85 MPa, compared with the BisGMA control having 497, 43, and 77 MPa. In addition, hyperbranched polymer modified resins have higher glass transition temperature (Tg) and lower thermal expansion coefficient (α) than the control. This research is significant both for increasing our knowledge about hyperbranched multi-functional polymers as well as leading to new dental resin systems with better performance.  相似文献   

8.
Polystyrene resins cross-linked with di(ethylene glycol) dimethacrylate (DEGDMA) and tri(ethylene glycol) dimethacrylate (TEGDMA), DEGDMA-PS and TEGDMA-PS, were synthesized by suspension copolymerization. Four functionalized resins, chloromethyl resin, 4-hydroxymethylphenoxymethyl resin (Wang resin), 4-methylbenzhydrylamine resin (MBHA resin) and 2-chlorotrityl chloride resin, were prepared from DEGDMA-PS and TEGDMA-PS. DEGDMA-PS and TEGDMA-PS showed high reactivity in the functionalization reactions in comparison with Merrifield resin (polystyrene cross-linked with divinylbenzene, DVB-PS). DEGDMA-PS-Wang resin and TEGDMA-PS-Wang resin were used as the solid-phase support for the synthesis of a difficult sequence, the fragment of acyl carrier protein 65-74. The yields of the crude peptide synthesized using DEGDMA-PS-Wang resin, TEGDMA-PS-Wang resin and DVB-PS-Wang resin were 92.3%, 91.6% and 78.8%, respectively. The purities of the crude peptides were 85.7%, 88.1% and 73.3%, respectively.  相似文献   

9.
Abstract

In the study, dental composites of color A2 using Bis-GMA/UDMA/TEGDMA resins (ratios 70/10/20), and silica filler (70%wt, 75%wt, and 80%wt) which is a hybrid of two silica types in nano and micro dimensions were made using two different photoinitiators namely BAPO and camphorquinone. The optimum photoinitiator was selected based on the mechanical tests results after which the composites were subjected to the following tests: FTIR to evaluate polymerization degree, microhardness test, UTM, and SEM micrographs were taken to analyze the surface fracture of samples. The results of photoinitiator selection (flexural strength test) is 36.54?MPa, 37.62?MPa, and 75.08?MPa for BAPO?+?camphorquinone, camphorquinone, and BAPO respectively. The results show that the BAPO photoinitiator exhibits better results over camphorquinone and also BAPO/camphorquinone initiator systems. Then after choosing the photoinitiator system composites with different filler contents show higher mechanical strength than existing dental composites. The results of the mechanical tests for the composites with different filler contents synthesized after initiator system selection were significantly higher than the values specified in ISO 4049:2009 (102?MPa over 80?MPa). FTIR results indicate that the degree of conversion in these composite is 25.41%, 37.68, and 40.94% for composites with different filler amounts.  相似文献   

10.
A novel synthetic biodegradable oligomer based upon methacrylated aminocaproyl maleamic acid (MACMA), was synthesized and characterized. Injectable and in situ crosslinkable polymer networks were formulated by copolymerization of MACMA with triethyleneglycol dimethacrylate (TEGDMA). In addition, composites composed of MACMA, TEGDMA and beta-tricalcium phosphate (β-TCP) were prepared. The networks and composites were initiated by photo- and redox-polymerization, respectively. The initial compressive (CS) and diametral tensile strengths (DTS) of these materials were determined and used to evaluate the effects of MACMA/TEGDMA ratios on the degradation behavior of the materials. The neat resin networks exhibited initial CS values ranging from 6.7 to 284.2 MPa and the composites demonstrated initial DTS values ranging from 2.8 to 20.8 MPa and CS values ranging from 19.1 to 119.5 MPa. During the course of degradation the polymer neat resins lost 51%, 69% and 61% of their initial CS after 3 weeks for the MACMA/TEGDMA ratios at 25/75, 50/50 and 75/25, respectively. The resin with the MACMA/TEGDMA ratio of 75/25 completely degraded after 6 months. The composite with the MACMA/TEGDMA ratio of 25/75 exhibited a significant increase in CS after an initial decrease for 7 days and then lost 57% of its initial CS after 3 months. The composite composed of poly(MACMA) homopolymer showed a complete degradation after 21 days.  相似文献   

11.
2 '-methacryloxy-3α, 7α 12α- trimethacryloyl cholic acid ethyl ester (CAGE4MA) has been prepared from cholic acid. Photo-polymeric resins were prepared from CAGE4MA. 2,2-bis[4-(2-hydroxy-3-methacrylyloxypropoxy)phenyl]propane (bis-GMA) was used for comparison, triethyleneglycol dimethacrylate (TEGDMA) was used as diluent. The polymerization was initiated by camphoroquinone (CQ)/N, N-dimethylaminoethyl methacrylate (DMAEMA) system. The conversion of CAGE4MA was 39% when the reaction time is 60s, which is lower than bis-GMA and TEGDMA.The swelling value of CAGE4MA resin was 0.41% in distilled water, which is much lower than those of bis-GMA resin (2.04%) and TEGDMA resin (4.77%) under the same conditions. Copolymers from CAGE4MA and TEGDMA have been prepared. With the increase of TEGDMA in mixture, the degree of conversion of CA GE4MA and swelling value increased. The swelling values of photocured resins in 0. 1mol/L HCl were also measured.  相似文献   

12.
The aim of this investigation was to determine degree of conversion, and flexural and compressive strength of photocurable acrylic resin. The acrylic resins based on bis-phenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) were formulated and then irradiated with red light to form a solid crosslinked polymer. Various post curing conditions were studied to investigate their effects on curing efficiency. Degree of conversion was analyzed by means of Fourier Transform Infrared Spectroscopy (FTIR) to monitor the quantity of remaining acrylic double bond in the cured resin. Three-point bending and compressive strength were tested using Universal Testing Machine (UTM) to evaluate the mechanical performance. Our investigation demonstrated that the formulated acrylic resins were possibly polymerized under irradiation with red light and degree of conversion and mechanical properties were closely correlated.  相似文献   

13.
Three novel phosphonated methacrylate monomers have been synthesized and studied for use in dental applications. Two of the monomers were synthesized from the reactions of glycidyl methacrylate (GMA) with (diethoxy‐phosphoryl)‐acetic acid (monomer 1 ) and (2‐hydroxy‐ethyl)‐phosphonic acid dimethyl ester (monomer 2 ). These monomers showed high crosslinking tendencies during thermal bulk and solution polymerizations. The third monomer (monomer 3 ) was prepared by the reaction of bisphenol A diglycidylether (DER) with (diethoxy‐phosphoryl)‐acetic acid and subsequent conversion of the resulting diol to the methacrylate with methacryloyl chloride. The homopolymerization and copolymerization behaviors of the synthesized monomers were also investigated with glycerol dimethacrylate (GDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (bis‐GMA) using photodifferential scanning calorimetry at 40 °C using 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) as photoinitiator. Monomer 1 showed polymerization rate similar or greater than dimethacrylates studied here but with higher conversion. The maximum rate of polymerizations decreased in the following order: 1 ~TEGDMA>GDMA~bis‐GMA~ 3 > 2 . A synergistic effect in the rate of polymerization was observed during copolymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2290–2299, 2008  相似文献   

14.
The free radical copolymerization of styrene and other vinyl monomers to produce cross-linked, network polymers is of technological importance in the production of ion-exchange resins, packings for gas-liquid and gel permeation chromatography, cross-linked latex polymers, and other products. The principal multifunctional cross-linking monomers which are used in this connection are ethylene glycol dimethacrylate and divinylbenzenes, and accurate values for reactivity ratios in their reactions with bifunctional monomers are essential for the design of copolymerization processes and products.

Wiley and co-workers have reported reactivity ratios for the copolymerizations of these monomers with styrene and with methyl methacrylate [1]. In these studies the reactivity ratios were calculated from the raw data using a graphical “method of intersections” [2]. In this procedure the differential copolymer equation is put into the form  相似文献   

15.
A number of poly(N-isopropylacrylamide) (polyNIPAM) microgels were prepared with dimethacrylate cross-linking agents of various lengths, ether and ester groups in the backbone, and pendant vinylidine functionality. These materials were characterized by examining their morphological patterns using optical and scanning electron microscopy. When ethylene glycol dimethacrylate (EGDMA) was used as a cross-linking agent, microspheres of approximately 1 μm in diameter were obtained. Diethylene glycol dimethacrylate (DEGDMA) cross-linking resulted in relatively large spherical structures (1–5 μm) as well as spherical nanostructures (200 nm). Using triethylene glycol dimethacrylate (TEGDMA) resulted in spheres with diameters between 1 μm and 3 μm. The hydrodynamic particle diameter decreased with the increasing chain length of the dimethacrylate cross-linking agents. The turbidity increased with the temperature of transition points occurring at approximately 31–32°C confirming the thermosensitivity of the obtained polymeric structures.  相似文献   

16.
Summary: Composites of dimethacrylates/organoclay were obtained by in situ photopolymerization of Bis-GMA (Bisphenol A glycidyl methacrylate) and TEGDMA (tetraethyleneglycol dimethacrylate) in the presence of camphorquinone and DEEMA (2-(diethylamino)ethyl methacrylate). The composites contained up to 10% wt/wt of organoclays. Monomer conversion and polymerization kinetics were determined by real time Fourier-Transform Infrared Spectroscopy – Attenuated Total Reflectance (FTIR-ATR), and showed an increase of conversion with addition of the clay. The storage modulus E' of the composites also had a marked dependence on the composite composition and increased with addition of clay at all temperatures. Tg also increases with clay content. X-Ray Diffraction (XRD) analysis shows that the clay is completely exfoliated for the composites with a lower proportion of clay, whereas for larger clay/polymer proportions peaks corresponding to the interlamellar distance of the clay are still observed. This is probably due to the fact that the amount of monomers in the initial formulation was not sufficient to delaminate the clay. Scanning Electron Microscopy (SEM) images indicate a quite homogenous copolymer, with some clay aggregates that increase in size and number for the higher filler loadings in agreement with the XRD results.  相似文献   

17.
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol–gel composition was determined by extraction with dichloromethane followed by 1H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.  相似文献   

18.
The objectives of this study were to verify thermal properties, degree of conversion, and morphological features of several dimethacrylate polymers with different glycerol content and obtain the better proportion system to decrease cost of final polymer. These polymers were synthesized by photopolymerization, which has economic and ecological advantages. The glycerol can be used as a coinitiator in photopolymerization and has the advantage of being inexpensive and non-toxic; thus, it is in the scope of the green chemistry principles. Simultaneous thermogravimetry–differential thermal analysis and derivative thermogravimetric, differential scanning calorimetry, middle infrared spectroscopy, and scanning electronic microscopy were used to determine thermal properties, degree of conversion, and morphological characteristics of polymers obtained. The thermoanalytical results showed that glycerol addition in the dimethacrylate system caused few modifications in the thermal stability of the polymer and thermal events when compared with pure polymers (without glycerol). Two dimethacrylate systems (UDMA/glycerol and Bis-GMA/glycerol) showed good results for conversion degree and morphological aspects when compared with pure systems.  相似文献   

19.
The aim of this study was to synthesize and characterize N,N‐di(methacryly‐ethoxycarbonyl‐ethyl)‐N‐(1,3‐benzodioxole‐ 5‐methylene)(DMEBM) to replace both triethylene glycol dimethylacrylate(TEGDMA) as a dilute and the non‐polymerizable amine, which is added as a co‐initiator in dental resin mixtures. 2,2‐bis[4‐(2‐Hydroxy‐3‐methacryloxypropoxy) phenyl]‐propane (Bis‐GMA) and camphorquinone (CQ) were used as monomer and photoinitiator in these model dental resin systems, in contrast to ethyl 4‐dimethylaminobenzoate (EDMAB) which was usually used as a co‐initiator. DMEBM was synthesized via Michael‐Addition reaction and characterized using 1H NMR spectroscopy. A mixture of Bis‐GMA/DMEBM/CQ was found to reach the double bond conversion of 67.5%, slightly higher than that of Bis‐GMA/TEGDMA/CQ/EDMAB (66.8%) and Bis‐GMA/TEGDMA/CQ/DMEBM (64.8%). In addition, the glass transition temperature of Bis‐GMA/TEGDMA/CQ/EDMAB (93.4°C) were higher than that of Bis‐GMA/TEGDMA/CQ/DMEBM (89.3 °C) and Bis‐GMA/DMEBM/CQ (80.4°C). The water sorption and solubility of Bis‐GMA/TEGDMA/CQ/DMEBM were higher than that of Bis‐GMA/TEGDMA/CQ/EDMAB and Bis‐GMA/DMEBM/CQ. However, the values were still within the range of the ISO 4049 standards. DMEBM could be used as a potential co‐initiator and diluent for dental composite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(5):1394-1403
In this study, the effect of varying different weight fraction of silane‐treated nanosilica (0‐15 wt%) on the wear behavior of Bisphenol‐A glycidyl methacrylate/tri‐ethylene glycol dimethacrylate–based dental composite was analyzed. Fourier transform infrared spectroscopy, transmission electron microscope, and thermo‐gravimetric analysis were used to characterize silane‐treated filler. The in vitro wear tests were performed up to 20 000 cycles using dental wear simulator. Four different working conditions were discussed including 2‐body wear in distilled water and artificial saliva as well as 3‐body wear in slurry of poppy seed mixed in distilled water and poppy seed mixed in artificial saliva. The results suggested that composites with increased in nanosilica fillers exhibited lower wear volume and smoother worn surface in all working mediums. In 2‐body abrasive wear, the wear rate in distilled water was 10.05% more than that in artificial saliva condition. However, in 3‐body abrasive wear, the wear rate in slurry of poppy seed mixed in artificial saliva was 15.96% more than that in the medium of poppy seed mixed in distilled water condition. Also, the 2‐body abrasive wear rate was 56% and 22% more than the 3‐body abrasive wear rate in the slurry of distilled water and artificial saliva condition, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号