首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A simple procedure has been proposed for synthesis of planar triangular silver nanoparticles. Optimal conditions have been determined for particles to form, and the particles have been characterized by physicochemical methods. The halide-ion-sensory properties of sols of anisotropic silver nanoparticles prepared in different ways have been studied; sensitivity to halide ions is based on the changes in positions and intensities of longitudinal surface plasmon resonance (SPR) peaks in the range 500–800 nm in the optical absorption spectra of solutions.  相似文献   

2.
表面等离子体共振(SPR)技术是20世纪90年代发展起来的一种新型技术,应用SPR原理可检测生物传感芯片上配位体与分析物之间的相互作用情况,在生命科学、医疗检测、药物筛选、食品检测及环境监测等领域具有广泛的应用需求.SPR技术可与免疫传感器结合,利用抗原抗体的特异性反应可用于各种蛋白质抗原的检测.本文重点总结了SPR免疫传感器在食品及医疗领域蛋白质检测的应用,综述了近年来SPR免疫传感技术在这该领域的研究热点及进展.  相似文献   

3.
We have developed a methodological system consisting of a new surface sensitive quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surfaces together with different surface modification methods for the investigation of surface associated complement activation in human sera. The QCM-D surface, 10 mm in diameter, was modified by spin-coating of poly(urethane urea) (PUUR) and polystyrene (PS). Some sensor surfaces were also sputtered with titanium (Ti) or modified by hydrophobic self-assembled monolayer (SAM) of an 18-carbon alkane thiol with a ---CH3 end group. The amount of surface deposited complement protein was investigated by incubation of the modified sensor surfaces in human sera, followed by incubation with antibodies directed against complement factor 3c (C3c). The amounts of bound anti-C3c were then used as an arbitrary measure of surface induced complement activation. The order of complement activation of the different surfaces, as judged by three separate measurements per surface modification, was PUUR>PS=SAM>Ti. The Ti surface had a similar low degree of anti-C3c binding as the negative controls (heat inactivated sera). The novel QCM-D methodology was found to be very simple, accurate, sensitive and well suited as a screening method for complement activation and protein adsorption on different materials. We also compared the sensitivity of QCM-D method with surface plasmon resonance (SPR) for the quantification of protein adsorption and complement activation on gold sensor surfaces. The QCM-D method was equally sensitive as the SPR for the detection of protein adsorption from a solution independently if low flow rate (5 μl/min) was used. A slight increase in sensitivity was found at higher flow rate (30 μl/min). However, we found it difficult to use the SPR method on the Ti, PS and PUUR surfaces due to decreased light penetration of the modified SPR sensor chip.  相似文献   

4.
Wang GL  Dong YM  Zhu XY  Zhang WJ  Wang C  Jiao HJ 《The Analyst》2011,136(24):5256-5260
A novel colorimetric thiourea (TU) sensor was developed utilizing citrate modified silver nanoparticles (AgNPs). The introduction of TU reduced the overall surface charges of the AgNPs, resulting in aggregation of AgNPs and a colorimetric response correlating with the concentration of TU. The detection of TU could be realized within 2 min, with an ultralow detection limit of 0.8 nM by the absorption method. In addition, the AgNPs sensor also showed good selectivity in the presence of potential interfering compounds. Since common steps such as modification and separation could be successfully avoided, the sensor developed here could provide a simple, cost-effective yet rapid and sensitive measurement tool for TU detection, and may provide new opportunities in the development of sensors for food safety and environmental monitoring in the future.  相似文献   

5.
Colloidal silver has gained wide acceptance as an antimicrobial agent, and various substrates coated with nanosilver such as fabrics, plastics, and metal have been shown to develop antimicrobial properties. Here, a simple method to develop coating of colloidal silver on paper using ultrasonic radiation is presented, and the coatings are characterized using X-ray diffraction (XRD), high resolution scanning electron microscope (HRSEM), and thermogravimetry (TGA) measurements. Depending on the variables such as precursor concentrations and ultrasonication time, uniform coatings ranging from 90 to 150 nm in thickness have been achieved. Focused ion beam (FIB) cross section imaging measurements revealed that silver nanoparticles penetrated the paper surface to a depth of more than 1 μm, resulting in highly stable coatings. The coated paper demonstrated antibacterial activity against E. coli and S. aureus, suggesting its potential application as a food packing material for longer shelf life.  相似文献   

6.
采用壳聚糖改性棉和涤纶织物,通过织物表面的壳聚糖原位吸附、还原银离子制备了纳米银抗菌织物.用场发射扫描电子显微镜(SEM)、X射线能谱(EDA)、X射线粉末衍射仪(XRD)和反射光谱等对纳米银织物进行了表征,研究了银离子浓度和壳聚糖浓度对纳米银织物的影响,并检测了纳米银织物的抗菌性能.结果表明,在无需任何还原剂的条件下,壳聚糖改性的棉和涤纶织物表面可以均匀地形成银纳米粒子,晶粒大小为5~10 nm,所制备的纳米银织物均具有优异的抗菌性能.  相似文献   

7.
Because concern over endocrine disrupting reactions caused by chemicals to humans and animals is growing, a rapid and reliable screening assay for endocrine disrupting chemicals is required. We have developed an in vitro screening assay based on a hormone receptor mechanism using a surface plasmon resonance (SPR) sensor. The interaction between an estrogen receptor alpha (ER) and an estrogen response element (ERE) is monitored in real time, when ER is injected over the SPR sensor chip on which a DNA fragment containing ERE is immobilized. In the presence of a chemical with estrogenic activity, the ER-ERE interaction is enhanced and the kinetic parameters are altered. We have validated the assay in terms of its specificity, dose dependency, optimal reaction conditions and reproducibility. It has been shown that the assay is very reliable as a rapid and quantitative screening method to judge the estrogenic activities of chemicals.  相似文献   

8.
Sun Y  Xia Y 《The Analyst》2003,128(6):686-691
This paper presents several solution-phase methods for the large-scale synthesis of metal nanoparticles with controllable compositions (e.g., spherical nanoparticles of gold/silver alloys), morphologies (e.g., nanospheres, triangular nanoplates, circular nanodisks, and nanocubes of silver), and structures (e.g., solid vs. hollow colloids). Spectral measurements indicated that the positions of surface plasmon resonance (SPR) bands for these nanoparticles could be tuned by varying all these parameters. The number of SPR peaks was found to increase as the symmetry of the nanoparticles decreased. In addition to their use as chromophores with strong extinction coefficients, these nanoparticles could serve as a platform to probe binding events of chemical and biochemical species on their surfaces. Gold nanoshells with hollow interiors were, in particular, shown to exhibit a much higher sensitivity to environmental changes than gold solid colloids with roughly the same size.  相似文献   

9.
食品污染是危害公众健康和安全的重要问题,探究灵敏、快速、简单的技术,以便在痕量水平上检测污染物,对保障食品质量安全和风险评价具有十分重要的意义.表面增强拉曼光谱(SERS)是利用光与金、银等纳米结构材料相互作用产生很强的表面等离子激元共振效应,可显著增强吸附在纳米结构表面上分子的拉曼信号,以超灵敏获取样品自身或拉曼探针...  相似文献   

10.
A highly sensitive “turn‐on” fluorescent sensor based on the size exclusion of the polyacrylamide gel was developed for the on‐gels detection of human serum proteins after PAGE. The possible mechanism of this fluorescence sensor was illustrated and validated by utilizing five kinds of colloidal silver nanoparticles with different particle size distribution and six kinds of polyacrylamide gels with different pore size. It was attributed to that silver nanoparticles (<5 nm in diameter) had been selectively absorbed into the gel and formed the small silver nanoclusters, resulting in the red fluorescence. Using this new technique for the detection of human serum proteins after PAGE, a satisfactory sensitivity was achieved and some relatively low‐abundance proteins (e.g. zinc‐alpha‐2‐glycoprotein), which are the significant proteinic markers of certain diseases can be easily detected, but not with traditional methods. Furthermore, it was also successfully applied to distinguish between serums from hepatoma patient and healthy people. As a new protein detection technique, the colloidal silver nanoparticles based “turn‐on” fluorescent sensor offers a rapid, economic, low background, and sensitive way for direct detection of human serum proteins, showing available potential and significance in the development of nanobiotechnology and proteome research.  相似文献   

11.
Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.  相似文献   

12.
Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation.  相似文献   

13.
Efficient methods to immobilize small molecules under continuous-flow microfluidic conditions would greatly improve label-free molecular interaction studies using biosensor technology. At present, small-molecule immobilization chemistries require special conditions and in many cases must be performed outside the detector and microfluidic system where real-time monitoring is not possible. Here, we have developed and optimized a method for on-chip bioorthogonal chemistry that enables rapid, reversible immobilization of small molecules with control over orientation and immobilization density, and apply this technique to surface plasmon resonance (SPR) studies. Immobilized small molecules reverse the orientation of canonical SPR interaction studies, and also enable a variety of new SPR applications including on-chip assembly and interaction studies of multicomponent structures, such as functionalized nanoparticles, and measurement of bioorthogonal reaction rates. We use this approach to demonstrate that on-chip assembled functionalized nanoparticles show a preserved ability to interact with their target protein, and to measure rapid bioorthogonal reaction rates with k(2) > 10(3) M(-1) s(-1). This method offers multiple benefits for microfluidic biological applications, including rapid screening of targeted nanoparticles with vastly decreased nanoparticle synthetic requirements, robust immobilization chemistry in the presence of serum, and a continuous flow technique that mimics biologic contexts better than current methods used to measure bioorthogonal reaction kinetics such as NMR or UV-vis spectroscopy (e.g., stopped flow kinetics). Taken together, this approach constitutes a flexible and powerful technique for evaluating a wide variety of reactions and intermolecular interactions for in vitro or in vivo applications.  相似文献   

14.
Wang J  Zhu Z  Munir A  Zhou HS 《Talanta》2011,84(3):783-788
Magnetic nanoparticles (MNPs) have been receiving increasing attention because of its great potentials in bioseparation. However, the separation products are difficult to be detected by general method due to their extremely small size. Here, we demonstrate that MNPs can greatly enhance the signal of surface plasmon resonance spectroscopy (SPR). Features of MNPs-aptamer conjugates as a powerful amplification reagent for ultrasensitive immunoassay are reported in this work for the first time. In order to evaluate the sensing ability of MNPs-aptamer conjugates as an amplification reagent, a sandwich SPR sensor is constructed by using thrombin as model analyte. Thrombin, captured by immobilized anti-thrombin aptamer on SPR gold film, is sensitively detected by SPR spectroscopy with a lowest detection limit of 0.017 nM after MNPs-aptamer conjugates is used as amplification reagent. At the same time, the excellent selectivity of the present biosensor is also confirmed by using three kinds of proteins (BSA, human IgM and human IgE) as controls. These results confirm that MNPs is a powerful sandwich element and an excellent amplification reagent for SPR based sandwich immunoassay and SPR has a great potential for the detection of MNPs-based bioseparation products.  相似文献   

15.
Yuk JS  Gibson GN  Rice JM  Guignon EF  Lynes MA 《The Analyst》2012,137(11):2574-2581
We have developed a novel dual mode immunoassay platform that combines the advantages of real-time, label free measurement of surface plasmon resonance (SPR) and the highly directional surface plasmon-coupled emission (SPCE) using a gold grating-based sensor chip. Since only fluorophore-labeled analyte molecules that are close to the metal surface of the sensor chip will couple to the surface plasmon, SPCE detection is highly surface-specific leading to background suppression and increased sensitivity. Theoretical calculations were done to find SPR and SPCE angles for a sensor chip optimized for Alexa Fluor 647. We have confirmed the SPR and SPCE responses on the dual mode sensor chip using Alexa Fluor 647 labeled anti-mouse IgG. Signal fluctuation of the dual mode sensor chip reader was below 1.2% and 0.8% for SPR and SPCE, respectively. The SPR response in this configuration showed a minimum detection level of 1 μg ml(-1), and the SPCE response showed a minimum detection level of 1 ng ml(-1) for the same sample. A range of human IgG concentrations in human serum was also analyzed with the dual mode sensor chip. The SPCE measurement is more sensitive than the SPR real-time measurement, and substantially extends the dynamic range of the assay platform, as well as enabling independent measurements of co-localized analytes on the same sensor chip region of interest. Since this assay platform is capable of measuring more than 1000 spatially encoded regions of interest on a 1 cm(2) sensor chip, it has the potential for high-content analyses of biological samples with both research and clinical applications.  相似文献   

16.
A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichlorophenol) antibody using a gold binding polypeptide (GBP) and protein G. The SPR response based on the antigen-antibody reaction in a flow system was measured by injecting a 2,4-dichlorophenol sample solution into the flow system in which the SPR sensor was located. In a direct immunoassay system using the modified sensor chip, no significant SPR angle shift less than 0.001° was observed when a 25 ppm of 2,4-dichlorophenol solution was injected. In order to improve the sensitivity of the SPR sensor, an indirect competitive immunoassay method was used in conjunction with the SPR sensor system using 2,4-dichlorophenol conjugated with bovine serum albumin (BSA). In the competitive assay, a 350 ppm 2,4-dichlorophenol-BSA conjugate solution containing 2,4-dichlorophenol at various concentrations (10-250 ppb) were injected into the SPR sensor system. The sensitivity of this indirect immunoassay was found to be extremely sensitive, compared to the direct one, and a detection limit of 20 ppb was estimated. Verification that the use of GBP for immobilizing the antibody on the sensor chip enhanced the sensitivity to 2,4-dichlorophenol was obtained by comparing the procedure with another modification, in which BSA was used instead of GBP for immobilizing the antibody on the sensor chip. The affinity constant of 2,4-dichlorophenol and its conjugate to the antibody were estimated form the SPR response.  相似文献   

17.
Iron and silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous sorghum extracts as both the reducing and capping agent. Silver ions were rapidly reduced by the aqueous sorghum bran extracts, leading to the formation of highly crystalline silver nanoparticles with an average diameter of 10 nm. The diffraction peaks were indexed to the face-centered cubic (fcc) phase of silver. The absorption spectra of colloidal silver nanoparticles showed a surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. Amorphous iron nanoparticles with an average diameter of 50 nm were formed instantaneously under ambient conditions. The reactivity of iron nanoparticles was tested by the H(2)O(2)-catalyzed degradation of bromothymol blue as a model organic contaminant.  相似文献   

18.
银纳米粒子自组装结构的光谱性质研究   总被引:4,自引:0,他引:4  
采用自组装方法在玻璃基底表面上构筑了银纳米粒子二维亚单层结构, 进而以对巯基苯胺为耦联分子进行银粒子的二次组装, 构成具有分子尺寸间隙的银粒子簇. 银粒子表面等离子体共振依赖于粒子间距、表面吸附分子和粒子组装方式. 同层内的银粒子相互间电磁偶合可导致银粒子偶极子等离子体共振蓝移; 对巯基苯胺的吸附则使得表面等离子体共振红移. 表面增强拉曼光谱结果表明, 具有分子尺寸间隙的银粒子簇对耦联于粒子间的对巯基苯胺分子的拉曼散射具有极大的增强效应, 同时也使耦联的对巯基苯胺与银粒子间产生更大程度的电荷转移.  相似文献   

19.
This review describes the exploitation of exclusively optical surface plasmon resonance (SPR) biosensors for the direct and indirect detection of pathogenic microorganisms in food chains and the environment. Direct detection is, in most cases, facilitated by the use of defined monoclonal or polyclonal antibodies raised against (a part of) the target pathogenic microorganisms. The antibodies were immobilized to a solid phase of the sensor to capture the microbe from the sample. Alternatively, antibodies were used in an inhibition-like assay involving incubation with the target organism prior to analysis of nonbound antibodies. The free immunoglobins were screened on a sensor surface coated with either purified antigens or with Fc or Fab binding antibodies. Discussed examples of these approaches are the determination of Escherichia coli O1 57:H7, Salmonella spp., and Listeria monocytogenes. Another direct detection strategy involved SPR analysis of polymerase chain reaction products of Shiga toxin-2 genes reporting the presence of E. coli O157:H7 in human stool. Metabolic products have been exploited as biomarkers for the presence of a microbial agent, such as enterotoxin B and a virulence factor for the occurrence of Staphylococcus aureus and Streptococcus suis, respectively. Indirect detection, on the other hand, is performed by analysis of a humoral immune response of the infected animal or human. By immobilization of specific antigenic structures, infections with Herpes simplex and human immunodeficiency viruses, Salmonella and Treponema pallidum bacteria, and Schistosoma spp. parasites were revealed using human, avian, and porcine sera and avian eggs. Bound antibodies were easily isotyped using an SPR biosensor to reveal the infection history of the individual. Discussed studies show the recent recognition of the suitability of this type of instrument for (rapid) detection of health-threatening microbes to food and environmental microbial safety.  相似文献   

20.
Liu P  Liu R  Guan G  Jiang C  Wang S  Zhang Z 《The Analyst》2011,136(20):4152-4158
A surface-enhanced Raman scattering (SERS)-based sensor for the determination of theophylline (THO) has been developed by imprinting the target molecules on the surface of silver nanoparticles. The desired recognition sites are generated after template removal and homogeneous distribution on the silver nanoparticles that have been incorporated within polymer matrix by the in situ reduction of theophylline-silver complexes, providing molecular recognition ability and SERS active surfaces. The theophylline molecules, complementary to the shape, size, and functionality of the recognition cavities, can selectively bind to the recognition sites at the surface of silver nanoparticles driven by the formation of hydrogen bonding and surface coordination. It has been demonstrated that the SERS signals of the theophylline molecules captured on the surface of the silver nanoparticles have a good reproducibility and a dose-response relationship to the target analytes, showing the potential for reliable identification and quantification of the bioactive compound. The molecular imprinting-based SERS sensor, like antibodies or enzymes, also possesses the ability to distinguish theophylline from the closely related structure caffeine due to the variations of molecular size and shape as well as the different affinity to silver ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号