首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— A study was made of the kinetics of the proflavine-sensitized photooxidation of methionine to methionine sulfoxide. The reaction is inhibited by the paramagnetic ions Cu2+ and Mn2+, which suggests that the triplet state of the sensitizer is an intermediate. A mechanism is proposed in which methionine reacts with the first singlet state of oxygen, produced by energy transfer from the triplet sensitizer. The decrease in the rate of photooxidation with increasing proflavine concentration is ascribed to self-quenching of the excited singlet state of the dye.  相似文献   

2.
Abstract— The photooxidation of reduced lumiflavin in its acidic form, LfH 3 +, takes place in two consecutive steps. Upon illumination of LfH 3 + in its absorption band at 313 nm the semiquinone, LfH 3 +, is formed. Two LfH 2 + ions are consumed for every LfH 2 + formed. Illumination of the semiquinone in its absorption band at 495 nm causes further oxidation so that the oxidized LfH+ ion is formed. In this reaction one LfH 3 + ion is photolyzed for every LfH+ formed. In addition, a hydrogen atom is released in the photooxidation of LfH 2 +. Mechanisms for the two photoreactions are proposed.  相似文献   

3.
Abstract— The self-sensitized photooxidation of quercetin was not suppressed by superoxide dismutase (SOD), but suppressed by ascorbate. During the suppression of quercetin photooxidation, ascorbate was oxidized. These results suggest the reduction of oxidized quercetin to quercetin by ascorbate. Quercetin photooxidation in the presence of both riboflavin and EDTA was suppressed by SOD by about 90%. The result suggests the participation of O2- in the photooxidation of quercetin. The participation of O2- in the quercetin oxidation was confirmed by a xanthine-xanthine oxidase system. Based on these results the physiological and pharmacological functions of quercetin are discussed.  相似文献   

4.
Abstract— Zn(II)phthalocyanine (ZnPc) generates O2(1Δg) with a quantum yield of ca. 0.4 upon photocxcitation at 354 or 600 nm in ethanolic solution as determined by time-resolved phosphorescence studies at 1270 nm and photooxidation experiments using 1,3-diphenylisobenzofuran (DPBF) as substrate. The quantum yield of photooxidation slightly increases upon incorporation of ZnPc into unilamellar liposomes of dipalmitoylphosphatidylcholine. Under our irradiation conditions (600 nm, 18°C, and short light exposure times), DPBF(5–50 μM) undergoes photooxidation by a pure Type II mechanism; the rate constant for the O2(1Δg) + DPBF reaction is (1.1 ±0.1) x 109 M-1 s_1 in ethanol solution and determined to be about two orders of magnitude smaller when both ZnPc and DPBF are embedded into liposomes.  相似文献   

5.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

6.
Abstract— A computer-controlled laser photolysis apparatus has been used to investigate the results of photoexcitation of paraquat. cations (PQ2+) in methanol solution. The formation of the monoreduced species (PQ+) is shown to occur in two processes overall; one is too fast to be resolved from the laser pulse; the second shows first order kinetics with an observed rate constant which is linearly dependent on the paraquat concentration. The natural lifetime of this second precursor to PQ+ was measured at 1.4 μs. about ten times longer than the CH3O'radical which is the anticipated reductant. The identity of this precursor is possibly a radical pair.  相似文献   

7.
Abstract— Experiments on the photooxidation of N -allylthiourea, thiourea, and N-allylurea sensitized by the dye phenosafranine show that in N -allylthiourea the thiourea group is the site of singlet oxygen attack, while the allyl moiety neither reacts with nor quenches this metastable form of O2 (in neutral aqueous solutions). Low concentrations of N-3 (a known quencher of singlet oxygen) strongly reduce the photooxidation of allylthiourea by a mechanism which apparently obeys simple competition kinetics. From these results the rate constant of the reaction between allylthiourea and singlet oxygen is obtained ( k = 4 × 106 M -1 s-1; pH = 7.1).  相似文献   

8.
Abstract —D-α-tocopherol was found to be an effective quencher of 1O2 molecules ( k = 2.5 times 108→mol-1 s-1 in pyridine) by measuring its effect on the autosensitized photooxidation of rubrene. The quenching process was shown to be almost entirely 'physical', that is, α-tocopherol deactivated about 120 1O2 molecules before being destroyed. The results suggest that this process may be a mechanism for the protective effect of α - tocopherol in photodynamic action.  相似文献   

9.
SALT AND pH-DEPENDENT CHANGES OF THE PURPLE MEMBRANE ABSORPTION SPECTRUM   总被引:19,自引:0,他引:19  
Abstract —Purple membrane suspensions change their color to blue and the absorption maximum shifts to 608 nm when the membrane is deionized on a cation exchange column or when it is washed first with < 2N NaCl followed by deionized water. The deionized chromophore is essentially identical with the chromophore produced by lowering the pH of the native membrane to < 4.0 (p K < 3.0). However, the deionized membrane does not aggregate and can be obtained in the pure state. The original purple color of the membrane is restored by addition of around 1 m M Na+, K+ or 10 μ M Mg2+, Ca2+, Sr2+, Mn2+, Pb2+ or La2+ when the protein concentration is 5μ M . The required salt concentrations decrease with decreasing pH. Direct measurement of bound Ca2+ by atomic absorption spectroscopy yields a ratio of Ca2+ to protein of <2 and a binding constant of 1.4 × 106. Titration of the spectral change with salts at different pH values shows a linear relation between the pH and the logarithm of the salt concentration, with a 1:1 ratio for Na+ and 1:2 ratio for Ca2+. These relations are well predicted by Gouy-Chapman theory; however, the accompanying release of protons, changes of the CD spectrum, the complex kinetics of the spectral change during reconstitution with salt and preliminary X-ray diffraction results all suggest that conformational changes may be occurring in the protein.  相似文献   

10.
Abstract— The self-sensitized photooxidation of mesodiphenylhelianthrene in various solvents has been investigated. The involvement of 1O2 as the reactive intermediate in the formation of the endoperoxide has been demonstrated by the quenching of the photooxidation by the efficient 1O2-quencher β-carotene. The rate constant for the addition of 1O2 to mesodiphenylhelianthrene has been determined to be k R≅ 1010 M -1 s-1, which is the highest value hitherto known in the literature. The probability factor p , which describes the concentration independent part of the overall quantum yield, has been measured to be p =0.17.  相似文献   

11.
Abstract Experiments were performed to ascertain whether superoxide anion (O2) was produced by the photodynamic activation of hematoporphyrin derivative (HPD). Three different systems were utilized to detect formation of O2, oxidation of epinephrine to adrenochrome, reduction of cytochrome c and reduction of nitro blue tetrazolium (NBT). The effects on these detectors under identical conditions for HPD + h ν were compared to those obtained with two O2 generating systems, riboflavin + by and xanthine-xanthine oxidase, and to a singlet oxygen generating system, photoradiation of methylene blue. The results indicated that HPD + hv differed from the two O2 generating systems in failing to reduce cytochrome c or NET, and that HPD + h ν was similar to the behavior of methylene blue + h ν . In addition, HPD + h ν but not the O2 generating systems could inhibit mitochondrial cytochrome c oxidase activity. We conclude that the photodynamic activation of HPD does not produce O2 as a major oxygen radical and that the effects of HPD + h ν on mitochondrial cytochrome c oxidase are not caused by O2.  相似文献   

12.
Abstract— Irradiation (λmax 447 nm; 58.5 W m-2) of a microsomal membrane fraction of corn coleoptiles for 5 min in the presence of the in vivo concentration of riboflavin inactivates the tonoplast-type H+-ATPase. This inhibition is O2-dependent, is enhanced in D2O and suppressed by NaN3, indicating participation of singlet molecular oxygen in the inactivating mechanism. Besides singlet oxygen, the superoxide anion (O2-) is generated during irradiation, which obviously has no effect on the H+-pumping activity. However, in the presence of superoxide dismutase (SOD), O2- is transformed into H2O2 which causes an additional strong inhibition of H+. ATPase activity. This inhibition can be increased by ethylenediaminetetraacetic acid (EDTA), which is known to be an electron donor of the excited flavin molecule. In contrast, catalase prevents the H2O2-mediated photoinactivation of the H+ -ATPase. The light dependent inactivation of H+-transport does not occur if reduced glutathion (GSH) is added prior to or after irradiation. These results indicate that the blue light mediated inhibition of the H+-ATPase is mediated by singlet oxygen and H2O2 which oxidize essential SH-groups of the enzyme into disulfides. Reduction of the formed disulfides by GSH restores the activity of the enzyme.  相似文献   

13.
Abstract—Reaction rate constants for the reaction of singlet oxygen with a series of 24 sulfides in chloroform have been measured by inhibition of the self-sensitized photooxidation of rubrene. The reaction rate constant is sensitive to steric effects, decreasing as the carbons α- to sulfur become more highly substituted. Addition of a methyl group to each of the carbons α- to sulfur decreases the rate constant by about a factor of 10. From a series of p - and m -substituted thioanisoles, a ρ of -1.67 ± 0.09 was found. A much better correlation was found with σ than with σ+ indicating there is no resonance interaction with the reaction center. Typical rate constants are: di- n -butyl sulfide, 2.3 × 107 M -1 s-1; CBZ-L-methionine methyl ester, 1.4 × 107; di-s-butyl sulfide, 1.8 × 106; di- t -butyl sulfide, 1.3 × 105; and thioanisole, 2.3 × 106.  相似文献   

14.
Abstract— In many biological systems, the role of O2- in hydroxylation and toxic processes was assumed to be due to the formation of OH radicals. The Haber-Weiss reaction (Haber and Weiss, 1934)—(H2O2+ O2-→ OH + OH-+ O2) was suggested as the origin of this activity.
In this study it is shown that this reaction pathway is too slow, and that OH is probably formed from the reaction of complexed superoxide with H2O2 or/and from the reduction of Fe(III), bound to biological compounds, by O2-; the reduced Fe(II) can then react with H2O2 as a Fenton reagent, to yield OH.
It is also shown that singlet oxygen cannot be formed in these biological systems neither from the dismutation of OJ nor from the reaction of O2- with OH. Singlet oxygen may be formed from the reduction of metal complexes by O2-.  相似文献   

15.
Abstract— EPR studies of the porphyrin-sensitized photooxidation of 2, 2, 6,6-tetramethyl-piperidine to the nitroxide demonstrate that all the porphyrins examined are able to generate 1O2, although the efficiency of the photoprocess is dependent on the nature of the side chains. Incorporation of metal ions into the porphyrin molecule depresses or even inhibits the formation of 1O2. Comparison of these results with previously obtained kinetic data points out that the efficiency of porphyrins as photosensitizes is controlled by the lifetime of their lowest triplet state.  相似文献   

16.
Abstract— The concentrations of Na+, K+, Ca2+, Mg2+ and CI ions in the cytoplasm of octopus photoreceptor cells were determined before and after illumination by electron probe X-ray microanalysis. The concentrations of these elements in the dark-adapted photoreceptor cells were: Na+, 68.4; K+, 111.4; Ca2+, 4.0; Mg2+, 16.4; and CI, 102.9 m M /kg of cytoplasm. Illumination raised the concentration of Na+ by 58 m M and that of Cl by 23 m M and reduced the K+ concentration by 47 m M /kg of cytoplasm. A trace increase of intracellular Ca2+ and a trace decrease of Mg2+ were observed. These results confirm the hypothesis that sodium ions flow in on illumination, and suggest the influx of chloride ions and the outflux of potassium ions during illumination. The intracellular concentrations of Na+, K+ and Cl+ can give the basis for calculating the ion permeability of ion channels in octopus photoreceptor cell membranes, using values of the membrane potentials obtained by electrophysiological studies  相似文献   

17.
Abstract —In vivo participation of singlet excited oxygen (1O2, 1Δ9) in the photodynamic inactivation and induction of genetic changes (gene conversion) in acridine orange-sensitized yeast cells was investigated by using N3-, an efficient 1O2 quencher, and D2O, a known agent for the enhancement of the lifetime of 1O2. The addition of N3- protected the cells from both photodynamic actions. From an analysis of the concentration-dependent protection, about 80% of the induction of the genetic change is explainable on the basis of 1O2 mechanism. The quantitative estimation of the N3- protection in the inactivation was not possible because of the sigmoidal nature of the inactivation curve. The replacement of H2O with D2O during illumination was effective in enhancing the photodynamic inactivation but almost completely ineffective for the gene conversion induction. The deuterium effect with the cell system was clearly not as large as would be expected from in vitro experiments. This, however, could be explained from the kinetic consideration that natural quenchers of lO2 in the cell would mask the deuterium effect. By experiments with different cell stages it was demonstrated that these two modifying effects were dependent on the intracellular reaction environment. The conclusion is that 1O2 must be the major intermediate responsible for the photodynamic actions in acridine orangesensitized yeast cells.  相似文献   

18.
PHOTOSENSITIZED FORMATION OF ASCORBATE RADICALS BY RIBOFLAVIN: AN ESR STUDY   总被引:1,自引:0,他引:1  
Abstract— The riboflavin-sensitized photooxidation of ascorbate ion (HA-) to ascorbate radical (A-) was followed by electron spin resonance (ESR) spectroscopy in conjunction with oxygen depletion measurements. In air-saturated aqueous media, steady-state amounts of A- are rapidly established upon irradiation. The ESR signal disappears within a few seconds after the light is extinguished–more slowly under constant irradiation as oxygen is depleted. No photooxidation was observed in deaerated media. Similar results were obtained with other flavins and when ascorbyl palmitate was substituted for HA-. The effect of added superoxide dismutase, catalase, desferrioxamine, and singlet oxygen scavengers (NaN3 and tryptophan) was studied, as was replacement of water by D2O and saturation with O2. The results are indicative of ascorbate free radical production via direct reaction between ascorbate ion and triplet riboflavin in the presence of O2. While the presence of superoxide ion tends to reduce the steady-state concentration of A-, competition from the reaction of HA- with singlet oxygen is less apparent in this system (at HA-≥ 1 m M ) than in the previously studied aluminum phthalocyanine tetrasulfonate-photosensitized reaction.  相似文献   

19.
Abstract —Extremely high levels of paramagnetic manganese (Mn2+) which quench phosphorescent reactions have been found to inhibit the formation of thymine-containing dimers in M. radiodurans . Lowering the concentration of Mn2+ in the culture medium resulted in a lower intracellular concentration of Mn2+, an increase in the UV-sensitivity of this bacterium, and a larger photochemical yield of thymine-containing dimers. High levels of paramagnetic Mn2+ were not found in other test organisms which are more sensitive to UV-irradiation. One interpretation of our data is that in Micrococcus radiodurans Mn2+ may bind to the chromosome and thereby reduce the photochemical yield of thymine-containing dimers.  相似文献   

20.
Abstract— –Flash photolysis at 450 nm over the temperature range 0.8–60°C was used to determine Arrhenius parameters for the first and second order disappearance of triplet lumiflavin (1.66 µ .M ) at a flash energy of 2 kj in deaerated phosphate buffer at varying pH:
3Lf → Lf0
3Lf +3Lf → Lf0+ Lf0
Arrhenius parameters were also determined for the pseudo first-order quenching of triplet lumiflavin by 10 µ M ferri- and ferrocyanide ions,
3Lf + Fe3+→ Fe3+→ Lf0+ Fe3+ (energy transfer)
3Lf + Fe2+→ Lf-+ Fe3+ (electron transfer)
and for disappearance of the semireduced lumiflavin in the presence of ferrocyanide at pH 6.8, by the second-order reaction
Lf-+Lf -→ Lf0+ Lf=.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号