首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
The previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.285(8) cm(-1), g = [2.170(4), 2.161(3), 2.133(3)]. Similar, but not identical parameters were obtained for its borodeuteride analogue. The previously unreported complex, Tp*Zn(κ(2)-BH(4)), was prepared, and IR and NMR spectroscopy allowed its comparison with analogous closed shell borohydride complexes. Ligand-field theory was used to model the electronic transitions in the Ni(II) complex successfully, although it was less successful at reproducing the zero-field splitting (zfs) parameters. Advanced computational methods, both density functional theory (DFT) and ab initio wave function based approaches, were applied to these Tp*MBH(4) complexes to better understand the interaction between these metals and borohydride ion. DFT successfully reproduced bonding geometries and vibrational behavior of the complexes, although it was less successful for the spin Hamiltonian parameters of the open shell Ni(II) complex. These were instead best described using ab initio methods. The origin of the zfs in Tp*Ni(κ(3)-BH(4)) is described and shows that the relatively small magnitude of D results from several spin-orbit coupling (SOC) interactions of large magnitude, but with opposite sign. Spin-spin coupling (SSC) is also shown to be significant, a point that is not always appreciated in transition metal complexes. Overall, a picture of bonding and electronic structure in open and closed shell late transition metal borohydrides is provided, which has implications for the use of these complexes in catalysis and hydrogen storage.  相似文献   

3.
A systematic Density Functional Theory (DFT) and multiconfigurational ab initio computational analysis of the Spin Hamiltonian (SH) parameters of tetracoordinate S = 3/2 Co((II))S(4)-containing complexes has been performed. The complexes under study bear either arylthiolato, ArS(-), or dithioimidodiphosphinato, [R(2)P(S)NP(S)R'(2)](-) ligands. These complexes were chosen because accurate structural and spectroscopic data are available, including extensive Electron Paramagnetic Resonance (EPR)/Electron Nuclear Double Resonance (ENDOR) studies. For comparison purposes, the [Co(PPh(3))(2)Cl(2)] complex, which was thoroughly studied in the past by High-Field and Frequency EPR and Variable Temperature, Variable Field Magnetic Circular Dichroism (MCD) spectroscopies, was included in the studied set. The magnitude of the computed axial zero-field splitting parameter D (ZFS), of the Co((II))S(4) systems, was found to be within ~10% of the experimental values, provided that the property calculation is taken beyond the accuracy obtained with a second-order treatment of the spin-orbit coupling interaction. This is achieved by quasi degenerate perturbation theory (QDPT), in conjunction with complete active space configuration interaction (CAS-CI). The accuracy was increased upon recovering dynamic correlation with multiconfigurational ab initio methods. Specifically, spectroscopy oriented configuration interaction (SORCI), and difference dedicated configuration interaction (DDCI) were employed for the calculation of the D-tensor. The sign and magnitude of parameter D was analyzed in the framework of Ligand Field Theory, to reveal the differences in the electronic structures of the investigated Co((II))S(4) systems. For the axial complexes, accurate effective g'-tensors were obtained in the QDPT studies. These provide a diagnostic tool for the adopted ground state configuration (±3/2 or ±1/2) and are hence indicative of the sign of D. On the other hand, for the rhombic complexes, the determination of the sign of D required the SH parameters to be derived along suitably constructed symmetry interconversion pathways. This procedure, which introduces a dynamic perspective into the theoretical investigation, helped to shed some light on unresolved issues of the corresponding experimental studies. The metal hyperfine and ligand super-hyperfine A-tensors of the C(2) [Co{(SPPh(2))(SP(i)Pr(2))N}(2)] complex were estimated by DFT calculations. The theoretical data were shown to be in good agreement with the available experimental data. Decomposition of the metal A-tensor into individual contributions revealed that, despite the large ZFS, the observed significant anisotropy should be largely attributed to spin-dipolar contributions. The analysis of both, metal and ligand A-tensors, is consistent with a highly covalent character of the Co-S bonds.  相似文献   

4.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

5.
The synthesis of a new Ni(II)-Y(III) binuclear complex with a marked elongation axis in the first coordination sphere of the Ni(II) ion is presented. Its zero-field splitting (ZFS) is studied by means of magnetic data and state-of-the-art ab initio calculations. A good agreement between the experimental and theoretical ZFS parameter values is encountered, validating the whole approach. The magnetic anisotropy axes are extracted from the ab initio calculations, showing that the elongation axis around the Ni(II) ion corresponds to the hard axis of magnetization and that the sign of the axial D parameter is imposed by this axis. The Ni-Y axis is found to be an easy axis of magnetization, which is, however, not significant according to the sign of D. The already reported [(H(2)O)Ni(ovan)(2)(μ-NO(3))Y(ovan)(NO(3))]·H(2)O (ovan = o-vanillin) complex is then revisited. In this case, the elongation axis in the Ni(II) coordination sphere is less marked and the ZFS is dominated by the effect of the Y(III) ion belonging to the second coordination sphere. As a consequence, the D parameter is negative and the low-temperature behavior is dominated by the Ni-Y easy axis of magnetization. A competition between the first coordination sphere of the Ni(II) ion and the electrostatic effect of the Y(III) ion belonging to the second coordination sphere is then evidenced in both complexes, and the positive and negative D parameters are then linked to the relative importance of both effects in each complex.  相似文献   

6.
To elucidate tentative assignments of metal-ligand modes of thiosemicarbazide complexes, a structural study and a assignment of the normal vibrations of 2-methylthiosemicarbazide copper(II) nitrate, [Cu(2MeTSC)(2)(NO(3))(2)] have been done through the ab initio DFT: pBP86/DN** procedure, and through the normal coordinate analysis (NCA). In the vibrational calculations, the elongated CuONO(2) bonds of the nitrate groups were considered in the CS and CN tautomers of the complex. DFT calculations had revealed that the infrared spectra can be well interpreted through the CN tautomer, failing in the prediction of the -NO(2) group wavenumbers. A little difference stabilization energy for the tautomers were found: for the CN tautomer was E=-3487,36376a.u., and for the CS tautomer, E=-3473,93598a.u. The observed combination bands at 1763.0 and at 1754.0 cm(-1) are an indicative that the -NO(3)(-) groups acts as monodentate ligands. Calculations had confirmed the experimental assignment of the infrared spectrum.  相似文献   

7.
Treatment of M[N(SiMe3)2]3 (M = U, Pu (An); La, Ce (Ln)) with NH(EPPh2)2 and NH(EPiPr2)2 (E = S, Se), afforded the neutral complexes M[N(EPR2)2]3 (R = Ph, iPr). Tellurium donor complexes were synthesized by treatment of MI3(sol)4 (M = U, Pu; sol = py and M = La, Ce; sol = thf) with Na(tmeda)[N(TePiPr2)2]. The complexes have been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An-E bond lengths are shorter than the Ln-E bond lengths for metal ions of similar ionic radii, consistent with an increase in covalent interactions in the actinide bonding relative to the lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softness of the chalcogen donor atom. The DFT calculations for the model systems correlate well with experimentally determined metrical parameters. They indicate that the enhanced covalency in the M-E bond as group 16 is descended arises mostly from increased metal d-orbital participation. Conversely, an increase in f-orbital participation is responsible for the enhancement of covalency in An-E bonds compared to Ln-E bonds. The fundamental and practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized.  相似文献   

8.
9.
A theoretical, computational, and conceptual framework for the interpretation and prediction of the magnetic anisotropy of transition metal complexes with orbitally degenerate or orbitally nearly degenerate ground states is explored. The treatment is based on complete active space self-consistent field (CASSCF) wave functions in conjunction with N-electron valence perturbation theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for treatment of magnetic field- and spin-dependent relativistic effects. The methodology is applied to a series of Fe(II) complexes in ligand fields of almost trigonal pyramidal symmetry as provided by several variants of the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate (5)E ground state with strong in-state spin-orbit coupling (SOC). We study the competing effects of SOC and the (5)E?ε multimode Jahn-Teller effect as a function of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d(6) configuration the parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems, reported recently, i.e., [Fe(tpa(R))](-) (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are enough to lead to five lowest and thermally accessible spin sublevels described sufficiently well by S = 2 SH provided that it is extended with one fourth order anisotropy term. Using this most elementary parametrization that is consistent with the actual physics, the reported magnetization data for the target systems were reinterpreted and found to be in good agreement with the ab initio results. The multiplet energies from the ab initio calculations have been fitted with remarkable consistency using a ligand field (angular overlap) model (ab initio ligand field, AILFT). This allows for determination of bonding parameters and quantitatively demonstrates the correlation between increasingly negative D values and changes in the σ-bond strength induced by the peripheral ligands. In fact, the sigma-bonding capacity (and hence the Lewis basicity) of the ligand decreases along the series 1 > 2 > 3 > 4.  相似文献   

10.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

11.
Two organic ligands based on a sugar-scaffold derived from galactose and possessing three O-CH(2)-pyridine pendant arms at the 3-, 4-, and 5-positions of the galactopyranose that act as chelates afford mononuclear complexes when reacted with a Ni(II) salt. The magnetization behavior in the form of M=f(H/T) plots suggests the presence of appreciable magnetic anisotropy within the two complexes. The analysis of the EPR spectra performed at two different temperatures (7 and 17 K) and at three frequencies (190, 285, and 380 GHz) leads to the conclusion that the anisotropy has a high degree of axiality (E/D=0.17 for the two complexes), but with a different sign of the D parameter. The spin hamiltonian parameters D and E were reproduced for the two complexes by using calculations based on the angular overlap model (AOM). The structural difference between the two complexes responsible of the sign of the D parameters was also determined using AOM calculations. A thorough analysis of the structures showed that the structural differences in the coordination sphere of the two complexes responsible of the different D parameter sign result from the nature of the sugar scaffolds. In complex 1, the sugar scaffold imposes an intramolecular hydrogen bond with one of the atoms linked to Ni(II); this arrangement leads to a distorted coordination sphere and positive D value, while the absence of such a hydrogen bond in complex 2 leads to a less distorted environment around the Ni center and to a negative D value.  相似文献   

12.
The synthesis and the X-ray structure of two complexes exhibiting a linear chain of four nickel atoms is reported, following Ni4(mu4-phdpda)4 (1), which had been characterized previously. [Ni4(mu4-Tsdpda)4(H2O)2], where H2Tsdpda is N-(p-toluenesulfonyl)dipyridyldiamine (2), is axially coordinated to two water molecules, at variance with 1. One-electron oxidation of 2 resulted in the loss of the axial ligands, yielding [Ni4(mu4-Tsdpda)4]+, [3]+, which was also structurally characterized. Finally, we report the structure of Ni4(mu4-DAniDANy)4 (4), a complex synthesized starting from the new ligand N,N'-bis-p-anisyl-2,7-diamino-1,8-naphthyridine. Magnetic measurements concluded that 4 is diamagnetic, like 1, whereas 2 is antiferromagnetic (-2J(14) = 80 cm(-)(1), using the Heisenberg Hamiltonian H = -2J(14) S(1).S(4)), as are other axially coordinated chains with an odd number of nickel atoms. DFT calculations are reported on these complexes in order to rationalize their electronic structure and their magnetic behavior. The magnetic properties of the [Ni4]8+ complexes are governed by the electronic state of the Ni(II) atoms, which may be either low-spin (S = 0), or high-spin (S = 1). DFT calculations show that the promotion to high spin of two Ni atoms in the chain, either external or internal, depends on the interplay between axial and equatorial coordination. The synergy between axial coordination and the presence of electron-withdrawing toluenesulfonyl substituents in 2 favors the promotion to the high-spin state of the terminal Ni atoms, thus yielding an antiferromagnetic ground state for the complex. This is at variance with complexes 1 and 4, for which the lowest quintet state results from the promotion to high spin of the internal nickel atoms, together with an important ligand participation, and is destabilized by 9 to 16 kcal mol(-1) with respect to the diamagnetic ground state.  相似文献   

13.
Cotton FA  Feng X 《Inorganic chemistry》1996,35(17):4921-4925
Electronic structures of the title complexes have been studied using quantum chemical computations by different methods. It is shown that the results of Xalpha calculations agree well with expectations from classical ligand-field theory, but both are far from being in agreement with the results given by ab initio calculations. The HOMO in the ab initio Hartree-Fock molecular orbital diagrams of all these complexes is a chalcogen p(pi) lone pair orbital rather than the metal nonbonding d(xy)() orbital previously proposed. Electronic transition energies were calculated by CASSCF and CI methods. The results suggest that in the cases when Q = S, Se, and Te the lowest energy transitions should be those from the p(pi) lone pair orbitals to the metal-chalcogen pi orbitals. The calculated and observed electronic spectra of the oxo complex are in good agreement and very different from the spectra of the other complexes, and the lowest absorptions were accordingly assigned to transitions of different origins.  相似文献   

14.
The reaction of (Me3SiNSN)2S with TeCl4 in CH2Cl2 affords Cl2TeS2N2 (1) and that of (Me3SiNSN)2Se with TeCl4 produces Cl2TeSeSN2 (2) in good yields. The products were characterized by X-ray crystallography, as well as by NMR and vibrational spectroscopy and EI mass spectrometry. The Raman spectra were assigned by utilizing DFT molecular orbital calculations. The pathway of the formation of five-membered Cl2TeESN2 rings by the reactions of (Me3SiNSN)2E with TeCl4 (E = S, Se) is discussed. The reaction of (Me3SiNSN)2Se with [PPh4]2[Pd2X6] yields [PPh4]2[Pd2(mu-Se2N2S)X4] (X = Cl, 4a; Br, 4b), the first examples of complexes of the (Se2N2S)2- ligand. In both cases, this ligand bridges the two palladium centers through the selenium atoms.  相似文献   

15.
We have investigated the elusive reactive species of cytochrome P450(cam) (Compound I), the hydroxo complex formed during camphor hydroxylation, and the ferric hydroperoxo complex (Compound 0) by combined quantum mechanical/molecular mechanical (QM/MM) calculations, employing both density functional theory (DFT) and correlated ab initio methods. The first two intermediates appear multiconfigurational in character, especially in the doublet state and less so in the quartet state. DFT(B3LYP)/MM calculations reproduce the relative energies from correlated ab initio QM/MM treatments quite well, except for the splitting of the lowest A(1u)-A(2u) radical states. The inclusion of dynamic correlation is crucial for the proper ab initio treatment of these intermediates.  相似文献   

16.
Density functional and multiconfigurational (ab initio) calculations have been performed on [M(2)X(8)](2-) (X = Cl, Br, I) complexes of 4d (Mo, Tc, Ru), 5d (W, Re, Os), and 5f (U, Np, Pu) metals in order to investigate general trends, similarities and differences in the electronic structure and metal-metal bonding between f-block and d-block elements. Multiple metal-metal bonds consisting of a combination of sigma and pi interactions have been found in all species investigated, with delta-like interactions also occurring in the complexes of Tc, Re, Np, Ru, Os, and Pu. The molecular orbital analysis indicates that these metal-metal interactions possess predominantly d(z2) (sigma), d(xz) and d(yz) (pi), or d(xy) and d(x2-y2) (delta) character in the d-block species, and f(z3) (sigma), f(z2x) and f(z2y) (pi), or f(xyz) and f(z) (delta) character in the actinide systems. In the latter, all three (sigma, pi, delta) types of interaction exhibit bonding character, irrespective of whether the molecular symmetry is D(4h) or D(4d). By contrast, although the nature and properties of the sigma and pi bonds are largely similar for the D(4h) and D(4d) forms of the d-block complexes, the two most relevant metal-metal delta-like orbitals occur as a bonding and antibonding combination in D(4h) symmetry but as a nonbonding level in D(4d) symmetry. Multiconfigurational calculations have been performed on a subset of the actinide complexes, and show that a single electronic configuration plays a dominant role and corresponds to the lowest-energy configuration obtained using density functional theory.  相似文献   

17.
High-level ab initio calculations using multiconfigurational perturbation theory [complete active space with second-order perturbation theory (CASPT2)] were performed on the transition energy between the lowest high-spin (corresponding to (5T2g) in Oh) and low-spin (corresponding to 1A1g in Oh) states in the series of six-coordinated Fe(II) molecules [Fe(L)(NHS4)], where NHS4 is 2,2'-bis(2-mercaptophenylthio)diethylamine dianion and L=NH3, N2H4, PMe3, CO, and NO+. The results are compared to (previous and presently obtained) results from density functional theory (DFT) calculations with four functionals, which were already shown previously by Casida and co-workers [Fouqueau et al., J. Chem. Phys. 120, 9473 (2004); Ganzenmuller et al., ibid. 122, 234321 (2005); Fouqueau et al., ibid. 122, 044110 (2005); Lawson Daku et al., ChemPhysChem 6, 1393 (2005)] to perform well for the spin-pairing problem in these and other Fe(II) complexes, i.e., OLYP, PBE0, B3LYP, and B3LYP*. Very extended basis sets were used both for the DFT and CASPT2 calculations and were shown to be necessary to obtain quantitative results with both types of method. This work presents a sequel to a previous DFT/CASPT2 study of the same property in the complexes [Fe(H2O)6]2+, [Fe(NH3)6]2+, and [Fe(bpy)3]2+ [Pierloot et al., J. Chem. Phys. 125, 124303 (2006)]. The latter work was extended with new results obtained with larger basis sets and including the OLYP functional. For all considered complexes, the CASPT2 method predicts the correct ground state spin multiplicity. Since experimental data for the actual quintet-singlet (free) energy differences are not available, the performance of the different DFT functionals was judged based on the comparison between the DFT and CASPT2 results. From this, it was concluded that the generalized gradient OLYP functional performs remarkably well for the present series of ferrous compounds, whereas the success of the three hybrid functionals varies from case to case.  相似文献   

18.
The vibrational spectra of MM'2X8(2-) and trans-MM'2S6O2(2-) (M = Ni(II), Pd(II), Pt(II); M' = Mo, W; X = O, S) are calculated using ab initio method at RHF/LanL2DZ level. The calculated vibrational frequencies of MM'2S8(2-) and trans-MM'2O2S6(2-) are evaluated via comparison with experimental data. The results obtained by this method have the deviation <5% for M'S and MS stretching vibrational frequencies, however, relatively higher deviation is obtained for M'O stretching vibrational frequencies. Some vibrational frequencies of these complexes that have not been experimentally reported are also predicted and some of the experimental values are assigned.  相似文献   

19.
The ground and lower-lying excited electronic states of FeX2 and NiX2 (X=F, Cl, Br, I) molecules are systematically investigated by ab initio method at the complete active space self-consistent field (CASSCF) and multiconfigurational quasi-degenerate second-order perturbation (MCQDPT2) levels of theory. It is concluded that the dynamic electron correlation has to be taken into account in the prediction of the properties for such kind of molecules. The equilibrium bond lengths re(M–X), force constants and harmonic vibrational frequencies are calculated for the ground and lower-lying excited electronic states. The spin-orbit coupling (SOC) effects are analysed.  相似文献   

20.
The ternary clusters (tmeda)(6)Zn(14-x)Mn(x)S(13)Cl(2) (1a-d) and (tmeda)(6)Zn(14-x)Mn(x)Se(13)Cl(2) (2a-d), (tmeda = N,N,N',N'-tetramethylethylenediamine; x ≈ 2-8) and the binary clusters (tmeda)(6)Zn(14)E(13)Cl(2) (E = S, 3; Se, 4;) have been isolated by reacting (tmeda)Zn(ESiMe(3))(2) with Mn(II) and Zn(II) salts. Single crystal X-ray analysis of the complexes confirms the presence of the six "(tmeda)ZnE(2)" units as capping ligands that stabilize the clusters, and distorted tetrahedral geometry around the metal centers. Mn(II) is incorporated into the ZnE framework by substitution of Zn(II) ions in the cluster. The polynuclear complexes (tmeda)(6)Zn(12.3)Mn(1.7)S(13)Cl(2)1a, (tmeda)(6)Zn(12.0)Mn(2.0)Se(13)Cl(2)2a, and (tmeda)(6)Zn(8.4)Mn(5.6)Se(13)Cl(2)2d represent the first examples of "Mn/ZnE" clusters with structural characterization and indications of the local chemical environment of the Mn(II) ions. The incorporation of higher amounts of Mn into 1d and 2d has been confirmed by elemental analysis. Density functional theory (DFT) calculations indicate that replacement of Zn with Mn is perfectly feasible and at least partly allows for the identification of some sites preferred by the Mn(II) metals. These calculations, combined with luminescence studies, suggest a distribution of the Mn(II) in the clusters. The room temperature emission spectra of clusters 1c-d display a significant red shift relative to the all zinc cluster 3, with a peak maximum centered at 730 nm. Clusters 2c-d display a peak maximum at 640 nm in their emission spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号