首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing (1)Σ(g)(-) state has been excited via the intermediate c(4) (v = 0) (1)Π(u) Rydberg state. We present the analysis of the band located at T(v) = 10,800.7 ± 2 cm(-1) with respect to the intermediate state, 126,366 ± 11 cm(-1) with respect to the ground state, approximately 700 cm(-1) above the first ionization threshold. From the analysis a rotational constant of B(v) = 1.700 ± 0.005 cm(-1) has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c(4) (0) and c(5) (0) states are 5.6 and 4.4 ns, respectively, while the b(') (12), c(')(4) (4, 5, 6), and c(')(5) (0) states all have lifetimes in the range of hundreds of picoseconds.  相似文献   

2.
We have performed high precision photoassociation spectroscopy of ultracold cesium gas. Using trap-loss fluorescence detection and controlling the background cesium pressure we were able to photoassociate atoms into excited states of ultracold molecules with large detunings up to 56 cm(-1) below the Cs(6S(1/2)) + Cs(6P(1/2)) atomic asymptote. Vibrational progressions are assigned to 0(g)(-), 0(u)(+), and 1(g) long-range states. By fitting the spectral data to the LeRoy-Bernstein expression, the effective coefficients of the leading long-range interactions and the vibrational quantum number at dissociation are obtained. In addition we have observed spectral perturbations between states of the same symmetry belonging to different asymptotes (6P(1/2) and 6P(3/2)). The perturbations are manifested through irregular vibrational level spacings and are especially pronounced in the 0(u)(+) symmetry. Many observed rotational levels indicate d- and higher partial wave contributions to the photoassociation cross section in the presence of trapping laser light, while spectral regions with only weak features suggest nodes in the lower state wave functions corresponding to the two ground state atoms asymptote.  相似文献   

3.
A theoretical survey of the electronic structure of Ca(2) is presented using two-electron pseudopotentials complemented by core-polarization operators on Ca atoms and multireference configuration interaction/quasidegenerate perturbation theory (MRCI/QDPT) treatment of molecular excited states. The spectroscopic constants of 70 electronic states up to 30,000?cm(-1) above the ground state are determined. This implies all Ca(2) states dissociating up to the Ca(4s(2) (1)S) + Ca(4s5p (3,1)P) dissociation limits. All spin states (singlet, triplet, and quintet) are investigated. The work emphasizes the variety of interactions implying singly valence and lowest Rydberg excited states, doubly excited states generated by atom pairs (3)P(4s4p) + (3)P(4s4p), or (3)P(4s4p) + (3)D(4s3d), 4p3d double excitations asymptotically localized on a single-atom. Zwitterionic Ca(+) + Ca(-) configurations are evidenced and shown to induce specific electronic patterns in (1)Σ(g)(+), (3)Σ(g)(+), (1)Σ(u)(+), (3)Σ(u)(+), (1)Π(g), (3)Π(g), (1)Π(u), and (3)Π(u) symmetry manifolds. They also provide insight for qualitative features (barriers) found for the lower electronic states already investigated in previous publications by other authors.  相似文献   

4.
We have theoretically studied the role of high-lying molecular electronic states on the high harmonic generation (HHG) in H(2)(+) within the framework of a time-independent Hermitian nonperturbative three-dimensional Floquet technique for continuous wave monochromatic lasers of intensities of 2.59 × 10(13), 4.0 × 10(13), and 5.6 × 10(13) W∕cm(2), and wavelengths of 1064, 532, and 355 nm. To evaluate the HHG spectra, the resonance Floquet quasienergy and the Fourier components of the Floquet state corresponding to the initial vibrational-rotational level v = 0, J = 0 have been computed by solving the time-independent close-coupled Schro?dinger equation following the Floquet method. The calculations include seven molecular electronic states in the basis set expansion of the Floquet state. The electronic states considered, apart from the two lowest 1sσ(g) and 2pσ(u) states, are 2pπ(u), 2sσ(g), 3pσ(u), 3dσ(g), and 4fσ(u). All the concerned higher excited molecular electronic states asymptotically degenerate into the atomic state H(2 l) with l = 0, 1. The computations reveal signature of significant oscillations in the HHG spectra due to the interference effect of the higher molecular electronic states for all the considered laser intensities and wavelengths. We have attempted to explain, without invoking any ionization, the dynamics of HHG in H(2)(+) within the framework of electronic transitions due to the electric dipole moments and the nuclear motions on the field coupled ground, the first and the higher excited electronic states of this one-electron molecular ion.  相似文献   

5.
A class of doubly excited electronic states of the hydrogen molecule is reported. The states are of Sigma(-) symmetry and are located ca. 200,000 cm(-1) above the ground state and about 75,000 cm(-1) above the ionization threshold. The electronic wave functions employed to described these states have been expanded in the basis of exponentially correlated Gaussian (ECG) functions with the nonlinear parameters variationally optimized. The lowest (3)Sigma and (1)Sigma states dissociate into hydrogen atoms in the n = 2 state, whereas the lowest (3)Sigma and (1)Sigma states have H(n = 2) and H(n = 3) as the dissociation products. All the four states are attractive and accommodate vibrational levels. The location of the vibrational energy levels has been determined by solving the radial Schr?dinger equation within the Born-Oppenheimer approximation.  相似文献   

6.
The electronic spectrum of the UO(2) molecule has been determined using multiconfigurational wave functions together with the inclusion spin-orbit coupling. The molecule has been found to have a (5fphi)(7s), (3)Phi(2u), ground state. The lowest state of gerade symmetry,( 3)H(4g), corresponding to the electronic configuration (5f)(2) was found 3330 cm(-1) above the ground state. The computed energy levels and oscillator strengths were used for the assignment of the experimental spectrum in the energy range 17,000-19,000 and 27,000-32,000 cm(-1).  相似文献   

7.
Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit   总被引:1,自引:0,他引:1  
High precision photoassociation spectroscopy is performed in ultracold cesium gas, with detunings as large as 51 cm(-1) below the Cs(6S(1/2))+Cs(6P(3/2)) asymptote. Trap-loss fluorescence detection is used for detecting the photoassociation to excited state ultracold molecules. Long vibrational progressions are assigned to electronic states of 0(g) (-), 0(u) (+), and 1(g) symmetry. The spectral data are fitted to a LeRoy-Bernstein equation, in order to obtain the effective coefficients of the leading long-range interaction term (C(3)/R(3)) and the relative vibrational quantum numbers measured down from dissociation. Additionally we present evidence for perturbations between the 0(g) (-) state and the dark 2(u) state.  相似文献   

8.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

9.
The microscopic origin of the abrupt cubic-tetrahedral symmetry change associated with the local a(2u) vibrational mode observed by electron paramagnetic resonance in BaF(2):Mn(2+) at approximately 50 K is explored by means of density functional theory calculations. It is found that while the a(2u) vibrational frequencies calculated for MnF(8) (6-) in CaF(2) (168 cm(-1)) and SrF(2) (132 cm(-1)) are real, in the case of BaF(2):Mn(2+), the adiabatic potential curve along this mode exhibits a double well with a small barrier of 50 cm(-1). Although the ground and first excited vibrational states are localized around the energy minima, the rest of the excited states resemble those of a harmonic oscillator centered at Q(a(2u))=0. Moreover, only the inclusion of the anharmonic coupling between a(2u) and t(1u) modes allows one to understand the T(d)-O(h) transition temperature. It is shown that both the unusually high Mn(2+)-F(-) distance in BaF(2):Mn(2+) and the pseudo-Jahn-Teller interaction of the t(2g)(xy;xz;yz) antibonding orbital with filled t(1u) orbitals favor the a(2u) instability. The calculated a(2u) force constant for different electronic states supports this conclusion.  相似文献   

10.
The potential-energy surfaces for the proton transfer in the doubly hydrogen-bonded dimer of 7-azaindole in its lowest excited electronic states were examined. The dimer with C2h symmetry in its lowest excited electronic states, 2Ag and 1Bu, undergoes concerted double-proton transfer via transition states of the same symmetry placed at energies 4.55 and 4.70 kcal/mol higher, respectively. This suggests that the activation barriers for the double-proton transfer, if any, are lower than 1 kcal/mol. Emission from the dimers resulting from the double-proton transfer involves a Stokes shift of 5605 cm(-1), as theoretically estimated from the 0-0 components of the absortion and emission transitions of the dimer. Surprisingly, however, the calculations suggest that the green emission cannot arise from the 2Ag state generated by a double-proton transfer, because this structure possesses an imaginary frequency. In the 7-azaindole dimer of Cs symmetry, the first excited electronic state, a', lies 4.9 kcal/mol below 1Bu. This excited state a' can be the starting point for single-proton transfers giving a zwitterionic form that can dissociate into the protonated and deprotonated forms of 7-azaindole, the former being electronically excited. This situation of lower symmetry is consistent with the mutational scheme proposed by Goodman [Nature (London) 378, 237 (1995)].  相似文献   

11.
A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.  相似文献   

12.
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

13.
Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of investigating further this new material as a potential UV solid state laser.  相似文献   

14.
The electronic spectrum of Ni?(H?O) has been measured from 16200 to 18000 cm?1 using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ??Ni?(H?O) and ??Ni?(H?O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the 2A? ground state (which correlates to the 2D, 3d? ground state of Ni?) to the 32A? and 22A? excited states. These states are nearly degenerate and correlate to the 2F, 3d?4s excited state of Ni?. Both transitions are quite weak, but surprisingly, the transition to the 2A? state is stronger, although it is symmetry-forbidden. The 3d?4s states of Ni? interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni? increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)' = -12 cm?1 and ε(αα)' = -3 cm?1 and the excited state rotational constant A' = 14.5 cm?1. This implies a H-O-H angle of 104 ± 1° in the 22A? excited state. The O-H stretching frequencies of the ground state of Ni?(H?O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν?' = 3616.5 cm?1; the antisymmetric stretch is ν?' = 3688 cm?1. These values are 40 and 68 cm?1 lower, respectively, than those in bare H?O.  相似文献   

15.
Electric-field-induced electronic state g/u mixing of nearly isoenergetic rovibrational levels of the E0g+(3P2) and D0u+(3P2) ion-pair states of I2 has been observed using optical triple resonance combined with resonance ionization. Detectable mixing with applied fields of 1 kV/cm occurs over a range of energy level separations of < or = 0.3 cm(-1).  相似文献   

16.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   

17.
Structured emission in the gas phase to two weakly bound valence states that correlate with the third dissociation limit, I*(2P1/2)+I*(2P1/2), designated as (bb), from two third tier ion-pair states of I2 correlating with I-(1S0)+I+(1D2), the 1g(1D2), and F'0u+(1D2) states, has been observed for the first time. The 1u(bb) state is shown to be bound by 377+/-2 cm(-1) and molecular constants have been determined. Vibrational structure in the 0g+(bb) state could not be resolved but the spectrum is consistent with the state being bound by 435 cm(-1). The relative integrated intensities of the emissions from both ion-pair states to various valence states have also been measured, and some aspects are rationalized in terms of the electronic configurations of the upper and lower states. Bound levels of a previously uncharacterized 1g(ab) valence state have also been observed in emission from the gamma1u(3P2) ion-pair state. The lower state is shown to be bound by 270+/-2 cm(-1) and molecular constants have been determined.  相似文献   

18.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

19.
An extensive survey of the D(2) absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90,000-119,000 cm(-1) covers the full depth of the potential wells of the B (1)Σ(u)(+), B' (1)Σ(u)(+), and C (1)Π(u) electronic states up to the D(1s) + D(2l) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm(-1). Extended calibration methods are employed to extract line positions of D(2) lines at absolute accuracies of 0.03 cm(-1). The D (1)Π(u) and B' (1)Σ(u)(+) electronic states correlate with the D(1s) + D(3l]) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D(2). The observations are compared with previous studies, both experimental and theoretical.  相似文献   

20.
The six dimensional potential energy surface of the electronic ground state X?(1)Σ(g)(+) of Mg(2)H(2) has been generated by the coupled-cluster approach with single, double and perturbative triple excitations [CCSD(T)] combined with the aug-cc-pCVTZ basis set for Mg atoms and the aug-cc-pVTZ basis set for the H atoms. The analytical representation of this surface was used in variational calculations of the rovibrational energies of Mg(2)H(2), Mg(2)D(2), and HMg(2)D for J = 0 and 1. For Mg(2)H(2), the rotational constant B(0) is computed to be 0.1438 cm(-1), and the fundamental anharmonic wavenumbers are calculated to be ν(1) = 1527.3 cm(-1) (Σ(g)(+)), ν(2) = 275.3 cm(-1) (Σ(g)(+)), ν(3) = 1503.6 cm(-1) (Σ(u)(+)), ν(4) = 312.9 cm(-1) (Π(g)), and ν(5) = 256.5 cm(-1) (Π(u)). In addition, the electronic ground states of Mg(2)H, MgH(2), Mg(2), and MgH have been investigated in order to compute the bonding energies of Mg(2)H(2) and to explain the strength of the Mg-Mg bond in this tetra-atomic molecule. The nature of the low-lying excited states of Mg(2)H(2) is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号