首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrathin organic films of sucrose octaacetate (SOA) were deposited on 12.5 cm diameter silicon wafer substrates using high-pressure free meniscus coating (hFMC) with liquid CO2 (l-CO2) as a coating solvent. The dry film thickness across the wafer and the morphology of deposited films were characterized as a function of coating conditions-withdrawal velocity, solution concentration, and evaporation driving force (deltaP). When no evaporation driving force was applied (deltaP = 0), highly uniform films were deposited with thickness in the range of 8-105 angstroms over the entire concentration range (3-11 wt%). Uniform films were also obtained at low concentrations (3-5 wt%) with a low evaporation driving force (deltaP = 0.0138 MPa). However, films deposited at medium to high concentrations (7-11 wt%) were thicker (110-570 angstroms) and less uniform, with larger nonuniformities at higher applied evaporation driving forces. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology including drying defects and film roughness. Films deposited without evaporation had no apparent drying defects and very low root-mean-square (RMS) roughness (1.4-3.8 angstroms). Spinodal-like dewetting morphologies including holes with diameters in the range of 100-300 nm, and surface undulations were observed in films deposited at medium concentration (7 wt%) and low deltaP (0.0138-0.0276 MPa). At higher concentrations and higher evaporative driving forces, spinodal-like dewetting morphologies disappeared but concentric ring defect structures were observed with diameters in the range 20-125 microm. The film thickness and morphology of SOA films deposited from 1-CO2 hFMC were compared to those deposited from toluene and acetone under normal dip coating. Films deposited from l-CO2 hFMC were much thinner, more uniform, and exhibited much fewer drying defects and lower RMS roughness.  相似文献   

2.
Quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) were used to study zipper and layer-by-layer multilayer assemblies of artificial photosystems based on naphthalenediimides (NDIs) attached to an oligophenylethynyl (OPE-NDI) or p-oligophenyl (POP-NDI) backbone in dry and wet state. For the most interesting OPE-NDI zipper, one obtains for the dry film a monolayer thickness of 1.85 nm and a density of 1.58 g/cm(3), while the wet film has a larger monolayer thickness of 3.6 nm with a water content of 36%. The dry thickness of a monolayer in OPE-NDI zippers corresponds to about one-half of the length of the OPE scaffold in agreement with the proposed structure of the zipper. The low water content of the OPE-NDI films confirms their compact structure. The dry monolayer thickness of the POP-NDI films of 1.45 nm is smaller than that for the OPE-NDI films, which is probably related to a tilt of the POP scaffolds within the adsorbed layer. The POP-NDI films swell in water much more substantially, suggesting a much more open structure. These features are in excellent agreement with the better photophysical performance of the OPE-NDI assemblies when compared to the POP-NDI films.  相似文献   

3.
Nanoscale uniform films containing gold nanoparticle and polyelectrolyte multilayer structures were fabricated by the using spin-assembly or spin-assisted layer-by-layer (SA-LbL) deposition technique. These SA-LbL films with a general formula [Au/(PAH-PSS)nPAH]m possessed a well-organized microstructure with uniform surface morphology and high surface quality at a large scale (tens of micrometers across). Plasmon resonance peaks from isolated nanoparticles and interparticle interactions were revealed in the UV-visible extinction spectra of the SA-LbL films. All films showed the strong extinction peak in the region of 510-550 nm, which is due to the plasmon resonance of the individual gold nanoparticles redshifted because of a local dielectric environment. For films with sufficient density of gold nanoparticles within the layers, the second strong peak was consistently observed between 620 and 660 nm, which is the collective plasmon resonance from intralayer interparticle coupling. Finally, we suggested that, for certain film designs, interlayer interparticle resonance might be revealed as an independent contribution at 800 nm in UV-visible spectra. The observation of independent and concurrent individual, intralayer, and interlayer plasmon resonances can be critical for sensing applications, which involve monitoring of optomechanical properties of ultrathin optically active compliant membranes.  相似文献   

4.
Raman scattering signals recorded by microscopy from organic self-assembled monolayers (thin nanometric films of calibrated thickness) on silica substrates were found to be much stronger than those obtained from identical films assembled on bulk silicon substrates. This effect, observed in the backscattering geometry, is shown to result from interferences between the direct and reflected beams (including both the excitation and scattered radiation) in front of a smooth reflecting surface. Strong dependence of the effect on the distance between the sampled monolayer and the bulk silicon substrate allows enhancement of the Raman signals of organic monolayer films on silicon by factors up to approximately 70 by using appropriate silica spacers. The dependence of the Raman signal intensity on film thickness was also studied for thicker nanometric films comprising a series of self-assembled organosilane multilayers on bulk silicon and fused silica substrates, and the predicted deviation from linearity in the case of the silicon substrate is experimentally confirmed.  相似文献   

5.
Thin nanoporous gold (np-Au) films, ranging in thickness from approximately 40 to 1600 nm, have been prepared by selective chemical etching of Ag from Ag/Au alloy films supported on planar substrates. A combination of scanning electron microscopy (SEM) imaging, synchrotron grazing incidence small angle X-ray scattering, and N2 adsorption surface area measurements shows the films to exhibit a porous structure with intertwined gold fibrils exhibiting a spectrum of feature sizes and spacings ranging from several to hundreds of nanometers. Spectroscopic ellipsometry measurements (300-800 nm) reveal the onset of surface plasmon types of features with increase of film thicknesses into the approximately 200 nm film thickness range. Raman scattering measurements for films functionalized with a self-assembled monolayer formed from 4-fluorobenzenethiol show significant enhancements which vary sharply with film thickness and etching times. The maximum enhancement factors reach approximately 10(4) for 632.8 nm excitation, peak sharply in the approximately 200 nm thickness range for films prepared at optimum etching times, and show high spot to spot reproducibility with approximately 1 microm laser spot sizes, an indication that these films could be useful as durable, highly reproducible surface-enhanced Raman substrates.  相似文献   

6.
The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e., a layer of ODMS with a grafting density less than the maximum possible monolayer surface coverage. We demonstrate herein the fabrication of nanoporous PS templates from annealed PS-b-PMMA diblock copolymer thin films on these partial ODMS SAMs.  相似文献   

7.
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly-(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone. With the silicon backbones perpendicular or parallel to the surface of the substrate, the UV absorbance increased or decreased with an increase of the angle between the incident UV beam direction and direction normal to the thin film, respectively.  相似文献   

8.
Polymer nanostructures composed of poly(3-dodecylthiophene) (PDDT) have been directly written with control of polymer strand alignment and monolayer-by-monolayer thickness down to a single molecular monolayer (2.6 nm). The molecularly ordered nanostructures were written on silicon oxide surfaces using thermal dip-pen nanolithography, where an atomic force microscope cantilever with integrated tip heater was precoated with solid PDDT. The PDDT was precisely deposited onto the surface when the tip temperature was set close to PDDT's melting temperature.  相似文献   

9.
A new approach to fabricate porous nanostructured fluoropolymer composite films with a low dielectric constant (κ) was put forward at the first time. Initially, a film (pp-HDFD-PEGMA film) composed of dense, uniform, and well-defined nanospheres was controllably deposited on hydrogen-terminated silicon substrates by simultaneous plasma polymerization and deposition of a fluorine-containing hydrophobic monomer, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decene (HDFD), and a hydrophilic monomer poly(ethylene glycol) methacrylate (PEGMA), using a pulsed plasma polymerization technique. Then, by hydrolysing the plasma co-deposited film in aqueous hydrochloric acid solution to effectively remove the soluble nanospheres or fragments which mainly derived from PEGMA, a nanoporous fluorocarbon film was achieved. Subsequently, a top poly(tetrafluoroethylene) layer was deposited via the magnetron sputtering process to cap and complete an encapsulated structure. The resulting bilayer composite film consisting of a layer of nanostructured fluorocarbon porous film and a layer of encapsulation fluorocarbon polymer has a κ value of 1.8. The morphology investigation of the plasma co-deposited film prior and after acid-treatment by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) confirmed the form of the nanospheres and nanoporous structure, while the chemical composition and structure analysis by X-ray photoelectron spectroscopy (XPS) revealed that after the acid-treatment, the porous nanostructured film are composed predominantly of mainly fluorocarbon polymer.  相似文献   

10.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

11.

A plasma enhanced chemical vapor deposition (PECVD) reactor was used to deposit thin polymeric films with high absorption at 193 nm. The reactor is suitable to deposit uniform and pinhole free thin polymeric films with conformality over 95%. Conformal films with thickness as low as 200 Å have been deposited on silicon, glass, and quartz substrates, as well as silicon oxide, silicon nitrate, and aluminum films. Deposited films had variations in thickness of 3 to 5% over an area of 8 inches in diameter. Thin films deposited on silicon substrates under varying levels of RF power were scanned using the AFM technique. The measurements show increasing surface roughness of the scanned samples as the RF power increases.  相似文献   

12.
An application of the radiolysis method using an X-ray synchrotron beam is developed as a novel approach to the synthesis of metal-organic films with controlled shapes and thickness. We demonstrate that a Langmuir monolayer deposited onto a silver ion containing subphase, irradiated by an incident beam impinging below the critical angle for total reflection, induces the synthesis of a stable nanostructured silver-organic ultrathin film at the air-water interface. The X-ray scattering is also used to monitor in situ the structure of the silver layer during the synthesis process. The layer is observed by atomic force microscopy after its transfer onto a silicon substrate. One observes a film thickness of 4.6 nm, in good agreement with the X-ray penetration depth, about 4.5 nm. The silver structure is oriented by the initial organic film phase. This experiment demonstrates the considerable potential of this approach to produce various controlled metal-organic films with a surfactant self-assembly as a template.  相似文献   

13.
A novel ultrathin dual-layer film, which contained both bonded and mobile phases in ionic liquids (ILs) layer, was fabricated successfully on a silicon substrate modified by a self-assembled monolayer (SAM). The formation and surface properties of the films were analyzed using ellipsometer, water contact angle meter, attenuated total reflectance Fourier transform infrared spectroscopy, multi-functional X-ray photoelectron spectroscopy, and atomic force microscope. Meanwhile, the adhesive and nanotribological behaviors of the films were evaluated by a homemade colloidal probe. A ball-on-plate tribometer was used to evaluate the microtribological performances of the films. Compared with the single-layer ILs film deposited directly on the silicon surface, the as-prepared dual-layer film shows the improved tribological properties, which is attributed to the special chemical structure and outstanding physical properties of the dual-layer film, i.e., the strong adhesion between bonded phase of ILs and silicon substrate via the chemical bonding with SAM, the interlinked hydrogen bonds among the molecules, and two-phase structure composed of steady bonded phase with load-carrying capacity and flowable mobile phase with self-replenishment property.  相似文献   

14.
A new coating process is described (deposition from two immiscible supercritical phases, or DISP) in which a solution of supercritical carbon dioxide (scCO2) with a desired solute is displaced by supercritical helium (scHe). After depressurization, the solute is deposited on substrates initially submerged in the coating solvent. Micron-sized particles and thin films of sucrose octaacetate (SOA) were formed on silicon wafer substrate coupons from DISP at relatively low temperatures and pressures (< or = 6500 psi and < or = 60 degrees C). The particle size, film thickness, and morphology of SOA were characterized as a function of coating conditions-solution concentrations, withdrawal velocities, and pressures. Particles in the range of 1-14 microm in diameter were deposited at low solute concentrations (< or = 0.2 wt % at 4500 psi), whereas films in the range of 0.1-0.5 microm in thickness were deposited at higher solute concentrations (> or = 1.5 wt % at 4500 psi). Particle sizes decreased with increasing displacement velocity and increasing pressure. Estimates of characteristic times for diffusion and nucleation indicate that DISP is a diffusion-limited process. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology, including defect formations and film roughness. Highly uniform films with low root-mean-square (RMS) roughness (approximately 10 angstroms) were obtained at a low displacement velocity of 0.0035 cm/s, while ring-like defect structures were observed in films deposited at a higher displacement velocity of 0.035 cm/s. The film thickness and morphology of the films deposited from DISP were compared with films from normal dip coating with typical organic solvents (acetone and toluene). Films deposited from scCO2 by DISP were much thicker, more uniform, and exhibited much fewer drying defects and lower RMS roughness compared with films from the organic solvents.  相似文献   

15.
Water molecules adsorbed on SiO2/Si(100) at 140 K to form amorphous solid water (ASW) layers were utilized as a buffer for assisting the growth of gold nanoclusters. It was shown that the average height and diameter of the clusters deposited on the silicon oxide substrate following the buffer annealing/desorption increase as the buffer layer becomes thicker and as more gold is deposited. The clusters' height and diameter were determined by tapping mode AFM and high-resolution SEM imaging, respectively. Typical heights were between 0.5 and 4.5 nm, and the diameters were in the range of 3-9 nm for ASW layer thickness of 7-100 ML and gold deposition in the range of 0.2-1.2 A. The density of the clusters decreased from 65 x 10(10) to 8 x 10(10) cm (-2) in the same buffer layer thickness range. Significantly different morphology of the clusters is obtained when compared to those formed by direct deposition of gold on the silicon oxide surface and to those grown on top of Xe as buffer material.  相似文献   

16.
We report here on the fabrication and characterization of stable thin films of amorphous silica (SiO(x)) deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using the plasma-enhanced chemical vapor deposition (PECVD) technique. The resulting surfaces were characterized using atomic force microscopy (AFM), ellipsometry, contact angle measurements, and surface plasmon resonance (SPR). AFM analysis indicates that homogeneous films of silica with low roughness were formed on the gold surface. The deposited silica films showed excellent stability in different solvents and in piranha solution. There was no significant variation in the thickness or in the SPR signal after these harsh treatments. The Au/SiO(x) interfaces were investigated for their potential applications as new surface plasmon resonance sensor chips. Silica films with thicknesses up to 40 nm allowed visualization of the surface plasmon effect, while thicker films resulted in the loss of the SPR characteristics. SPR allowed further the determination of the silica thickness and was compared to ellipsometric results. Chemical treatment of the SiO(x) film with piranha solution led to the generation of silanol surface groups that have been coupled with a trichlorosilane.  相似文献   

17.
《Supramolecular Science》1997,4(3-4):417-421
Specially synthesized amphiphilic resorcinol calixarene (resorcarene 2) molecules have been deposited as Langmuir-Blodgett (LB) films on a variety of substrates including hydrophobically treated glass slides, silicon and gold-coated glass slides. A value of 1.9 nm2 is obtained for the area per molecule from measurements of pressure/area isotherms of the floating layer. Optical absorption studies within the ultraviolet-visible frequency region have been performed on these molecules in both LB films and in solution of resorcarene 2 in chloroform, containing 10% ethanol. Molecular aggregation in the form of dimerization is believed to take place during film formation. Further analysis has been carried out for Langmuir-Blodgett films of resorcarene 2 by using Fourier transform infra-red spectroscopy, low-angle X-ray diffraction and surface plasmon resonance (SPR) techniques. The monolayer thickness of 1.6 nm found from SPR measurements is consistent with that from other experimental observations.  相似文献   

18.
The results obtained in studies of the structure and electrochemical properties of film electrodes prepared by magnetron plasma sputtering of silicon and graphite and working under the conditions of lithium injection and extraction are generalized. Composite silicon-carbon electrodes synthesized by depositing silicon and carbon nanolayers with the use of a magnetron plasma were films 100–500 nm thick. Part of them exhibited highly uniform nanogranular structure based on a carbon matrix with inserted silicon clusters of size below 6 nm. The nanogranular structure of Si/C composites was observed for the first time; such a morphology was not characteristic of not structured silicon layers deposited under equal conditions. The factors that determined the electrochemical charging-discharging behavior of new composites were the degree of uniformity of the nanogranular structure, the ratio between the silicon and carbon components, and film thickness. For two thin films, the initial composite capacitance was higher than that corresponding to the Li4.4Si stoichiometry for the silicon component and LiC6 stoichiometry for the carbon component, which was related to the special nanostructured state of silicon and carbon. The effects (luminescence band and absorption bands in the visible range) characteristic of nanosized silicon particles were observed.  相似文献   

19.
Silane coupling agents are commonly used to activate surfaces for subsequent immobilization of biomolecules. The homogeneity and surface morphology of silane films is important for controlling the structural order of immobilized single-stranded DNA probes based on oligonucleotides. The surfaces of silicon wafers and glass slides with covalently attached 3-glycidoxypropyltrimethoxysilane (GOPS) have been characterized by using angularly dependent X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF–SIMS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and monochromatic and spectroscopic ellipsometry. XPS and ToF–SIMS data provided evidence of complete surface coverage by GOPS. Data from angularly resolved XPS and ellipsometry methods suggested that the GOPS films were of monolayer thickness. AFM and SEM data indicated the presence of films that consisted of nodules approximately 50–100 nm in diameter. Modeling suggested that the nodules may lead to a nanoscale structural morphology that might influence the hybridization kinetics and thermodynamics of immobilized oligonucleotides.  相似文献   

20.
本文制备了两亲性卟啉-紫精化合物的LB膜材料, 用π-A等温曲线、吸收光谱、小角和低角X射线衍射以及扫描隧道电镜(STM)等方法研究了LB膜的结构。结果表明, LB膜内分子排列是二维有序的超晶格结构, 卟啉环在基片上的排列呈"站立"状态。单个分子占有面积为1.15nm^2, 单层高度为2.35nm, 相邻裂间的距离为1.07nm。这种规则有序的两亲性卟啉-紫精化合物呈现出良好的光量子收率和光电响应特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号