首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过CS状态方程及熵极大原理在多元胶体系统研究了杂质对硬球系统团簇成核临界条件的影响. 极少量元素或杂质的小胶球对系统成核的临界条件的影响也是不可忽略的: 成核的临界体积分量显著地降低;此外,研究还发现杂质对成核的临界尺寸影响较少.  相似文献   

2.
This investigation is concerned with modeling the evaporation, or decay, of n-nonane molecular clusters. We use a unique cluster decay model that was first developed to estimate the decay time scale of argon clusters using molecular-dynamics simulations. In this study we seek to enhance the model so that it represents a more complex cluster decay dynamic, suitable for n-nonane clusters. Experimental measurements of nucleation rates of n-nonane droplets have been used to deduce the rate at which a molecule escapes from the cluster. Typically for an n-nonane cluster containing 40 molecules, at an experimental temperature of 225 K, the empirical decay time, which is the inverse of the decay rate, is estimated to be 50 ns. For this time scale, the direct observation of n-nonane cluster decay from a molecular-dynamics trajectory is not feasible, since decay events are so rare. However, the cluster decay model uses a combination of molecular dynamics and stochastic dynamics in order to resolve the problem associated with long decay time scales. The model is based on a Langevin treatment that views cluster decay as single-particle escape from a confining potential of mean force. It is used to predict kinetic decay times of n-nonane clusters. We discover this result differs significantly from a classically derived decay time scale determined from a continuum thermodynamic treatment of the population balance equations of clusters. However, the dynamically generated results obtained from the kinetic decay model compare more favorably than the classical results with the empirical decay times that are deduced from experimental measurements of n-nonane clusters.  相似文献   

3.
Inspired by the previous finding of some unusual vapour/liquid nucleation results on the ternary water/n-nonane/1-butanol system, atomistic simulations were carried out for a detailed investigation of this mixture. These simulations reproduced the experimentally-reported non-ideal nucleation behaviour for this system, including both onset activities and the average compositions of the critical nuclei. Close examination of the nucleation free energy data and the structure of the critical nuclei reveals two types of phase separation. One occurs internally inside the cluster via formation of a multi-layered structure. The other takes place externally, leading to the coexistence of multiple nucleation channels, characterized by critical clusters of different compositions. Such mechanistic and structural heterogeneity is the microscopic origin of the complex nucleation behaviour observed for this ternary mixture.  相似文献   

4.
Sodium dodecyl sulfate (SDS) can accelerate nucleation and growth of gas hydrates in a quiescent system. The objective of this paper is to investigate whether or not SDS micelles form in the meta-stable region of methane hydrates by the direct measurement of aqueous SDS concentration. The SDS solubility in water with high-pressure methane is identical to that under atmospheric pressure at a temperature range of 270-282 K; thus, the Krafft point under these methane hydrate-forming conditions does not shift from the normal Krafft point (281-289 K) under atmospheric pressure. The mole fraction of methane in SDS solution is independent of aqueous SDS concentration at a hydrate-forming condition. These results suggest that at temperatures below the normal Krafft point, no SDS micelles are present in the aqueous phase even in a high-pressure methane environment.  相似文献   

5.
A combination of the aggregation-volume-bias and configurational-bias Monte Carlo algorithms and the umbrella sampling technique was applied to investigate two different binary vapor-liquid nucleation systems: water/ethanol and water/n-nonane. The simulations are able to reproduce the different nonideal nucleation behavior observed experimentally for these two systems, i.e., the mutual enhancement of nucleation rates for water/ethanol mixtures and the two-pathway nucleation for water/n-nonane mixtures. Structural analysis provides microscopic explanations for the observed nucleation behavior. In particular, the simulations show a large and size-dependent surface enrichment of ethanol in the water/ethanol droplets, which confirms the previous experimental interpretation for this system. The immiscibility observed even for small water/n-nonane clusters causes the two-pathway nucleation mechanism.  相似文献   

6.
The homogeneous nucleation rates for n-nonane-n-propanol vapor mixtures have been calculated as a function of vapor-phase activities at 230 K using the classical nucleation theory (CNT) with both rigorous and approximate kinetic prefactors and compared to previously reported experimental data. The predicted nucleation rates resemble qualitatively the experimental results for low n-nonane gas phase activity. On the high nonane activity side the theoretical nucleation rates are about three orders of magnitude lower than the experimental data when using the CNT with the approximate kinetics. The accurate kinetics improves the situation by reducing the difference between theory and experiments to two orders of magnitude. Besides the nucleation rate comparison and the experimental and predicted onset activities, the critical cluster composition is presented. The total number of molecules is approximated by CNT with reasonable accuracy. Overall, the classical nucleation theory with rigorous kinetic prefactor seems to perform better. The thermodynamic parameters needed to calculate the nucleation rates are revised extensively. Up-to-date estimates of liquid phase activities using universal functional activity coefficient Dortmund method are presented together with the experimental values of surface tensions obtained in the present study.  相似文献   

7.
2,2,3-三甲基丁烷(C7H16)晶体的成核动力学   总被引:1,自引:0,他引:1  
High temperature solid phase I of 2,2,3-trimethylbutane(C7H16)(TMB) was investigated by X-ray powder diffraction. The electron diffraction technique for observing the kinetics of phase transitions in the condensed matter has been applied to study the freezing of TMB clusters with diameter of~13nm. Cluster beams were generated from the supersonically expanded TMB vapor with mole fraction of 0.01 in neon carrier gas. The freezing evolution was monitored by electron diffraction in interval of 7-9 μs. Clusters with an average size of ~5,500 molecules were observed to freeze into the solid phase I at a nucleation rate of 3.5 × 1028 m-3•s- 1 at the freezing temperature of clusters, ~170K. The estimated growth rate of postcritical nuclei indicates that the observed nucleation in the present experiment corresponds to mononuclear freezing of the clusters into single crystals of solid phase I.  相似文献   

8.
A new experimental technique has been developed to measure the mole fraction of the gas hydrate former in the bulk liquid phase, at the onset of hydrate growth and thereafter, in a semi-batch stirred tank reactor. The mole fraction of carbon dioxide and methane in the bulk liquid phase was obtained for the first 11 and 13 min of the growth stage, for the carbon dioxide–water and methane–water systems respectively. Experiments were conducted at temperatures ranging from 275.3 K to 281.4 K and at pressures ranging from 2017 kPa to 4000 kPa for the carbon dioxide–water system, while temperatures ranging from 275.1 K to 279.1 K and pressures ranging from 3858 kPa to 6992 kPa were investigated for the methane–water system. The mole fraction of carbon dioxide in the bulk liquid phase was found to be constant during the growth period, varying on average by 0.6% and 0.3% at 275.4 K and 279.5 K. Similarly, the mole fraction of methane in the bulk liquid phase was found to remain constant during the growth stage, varying on average by 2.0%, 0.8% and 0.2% at 275.1 K, 277.1 K and 279.1 K respectively. The mole fraction of the gas hydrate former in the bulk liquid phase was also found to increase with pressure and decrease with temperature, while remaining greater than its hydrate-liquid water equilibrium value. As a result, an alternate formulation of a hydrate growth model is proposed.  相似文献   

9.
The dispersions of polymer-protected gold/platinum bimetallic clusters were easily and reproducibly prepared by refluxing the mixed solutions of tetrachloroaureic(III) acid and hexachloroplatinic(IV) acid in ethanol/water (1/1) at 90 ∼ 95 °C for 2 h in the presence of a protective polymer such as poly(N-vinyl-2-pyrrolidone) (PVP). The gold/platinum bimetallic clusters thus obtained were very small, well dispersed and very stable. The UV-Vis spectra and the transmission electron micrographs have indicated that each bimetallic particle has an alloy structure consisting of both gold and platinum atoms, and that the surface of the cluster particle is rich in platinum atoms and the inner core in gold atoms. The gold/platinum bimetallic clusters were used as the multi-electron redox catalysts for visible light-induced hydrogen evolution from water. The rate of hydrogen evolution depended on the mole ratio of the gold/platinum bimetallic clusters. The bimetallic clusters at the mole ratio of Au/Pt = 2/3 were the most active catalyst. The in-situ UV-Vis spectra during the reaction have indicated that the order of the aggregation in the two kinds of metal atoms is very important for structure determination of the Au/Pt bimetallic clusters. The protective polymer PVP plays a role not only in protecting hydrophobic colloidal particles in an aqueous solution, but also in determining the metal composition of the cluster surface.  相似文献   

10.
The AVUS-HR approach, which combines histogram reweighting with aggregation-volume-bias Monte Carlo nucleation simulations using self-adaptive umbrella sampling, was extended to multicomponent nucleation systems. It was applied to investigate the homogeneous vapor-liquid nucleation for the binary n-nonane/1-alcohol series, including the n-nonane/methanol, n-nonane/ethanol, n-nonane/1-propanol, n-nonane/1-butanol, n-nonane/1-hexanol, and n-nonane/1-decanol systems. The simple transferable potentials for phase equilibria-united atom force field was used in this investigation. It was found that the nucleation free energy (NFE) contour plots obtained for these binary n-nonane/1-alcohol nucleation systems exhibit rather interesting mechanistic features, some of which are distinct from other binary systems previously studied (such as water/ethanol and water/n-nonane). In addition, the NFE profiles show a subtle evolution with the increase in alcohol chain length, from a somewhat two-pathway type of shape as observed for the n-nonane/methanol system to a more normal single-pathway one for systems involving longer alcohols (1-hexanol and 1-decanol). In contrast, the NFE maps obtained for the other three binary systems involving those medium-length alcohols display the most striking feature with the saddle point stretched almost all the way from the n-nonane-enriched to the alcohol-enriched domain, implying that multiple pathways coexist on the nucleation map. These free energy profiles were shown to be consistent with the non-ideal nucleation behavior observed experimentally for this binary series, namely, a rather reluctant conucleation of the alcohols with n-nonane. In particular, this non-ideal behavior becomes more severe with a decrease in the alcohol chain length. Also, analysis of the compositions of the critical nuclei indicates a reluctant mixing behavior between these two species, i.e., depletion of the alcohol at low alcohol activity or depletion of n-nonane at low n-nonane activity, in agreement with the experimental interpretations. Furthermore, a microscopic inhomogeneity is present inside these critical nuclei, that is, alcohols aggregate via hydrogen bonds forming alcohol-enriched domains.  相似文献   

11.
Phase equilibria for the CH4 + CO2 + H2O system have been investigated in the past, but mole fraction of methane and carbon dioxide in the bulk liquid phase has not been measured under hydrate–liquid–vapor equilibrium. Equilibrium liquid composition is very important as it defines the driving force for hydrate growth. This study presents the solubility of methane and carbon dioxide under H–Lw–V equilibrium. Emphasis is made on the effect of pressure along the respective isotherms on the equilibrium mole fraction of the individual hydrate formers in the liquid.  相似文献   

12.
Prompted by a previous finding of unusual mixing behavior for the critical clusters involved in the vapor-liquid nucleation of the ternary water/n-nonane/1-butanol mixture, atomistic simulations employing the AVUS-HR technique were carried out to extend such investigations to include both shorter and longer alcohols, namely, the water/n-nonane/CiH2i+1OH mixture with i = 2, 4, 6, and 8. It is clear from this extensive investigation that the miscibility between water and n-nonane can be further improved by increasing the chain length of the alcohol (surfactant). In fact, for the water/n-nonane/1-octanol mixture at an intermediate gas-phase activity composition, the nucleation can proceed via fully mixed critical nuclei containing a roughly equal amount of all three components, which is in contrast to the dominantly binary-like nucleation channels observed for such mixtures involving shorter alcohols. Structural analysis revealed that these mixed nuclei take on a multilayered structural motif of the core-shell (water-alcohol) type with n-nonane distributed outside, forming an additional layer, more or less uniformly, compared to the one-sided deposition found for systems involving shorter alcohols. This structure provides a microscopic origin for the enhanced miscibility of water with n-nonane observed in the presence of 1-alcohol. These results may also have important implications for atmospheric organic aerosols.  相似文献   

13.
The method of histogram-reweighting was integrated with a recently developed approach using aggregation-volume-bias Monte Carlo and self-adaptive umbrella sampling to develop the AVUS-HR algorithm that allows for exceedingly efficient calculations of nucleation properties over a wide range of thermodynamic conditions. Simulations were carried out for water using both fixed-charge and polarizable force fields belonging to the TIP4P family (namely, TIP4P, TIP4P-FQ, TIP4P-pol2, and TIP4P-pol3) to investigate the nucleation of water over a temperature range from 200 to 300 K and the concentration of water clusters in the atmosphere at elevations up to 15 km. It was found that the nucleation free energy barriers and atmospheric concentrations are extremely sensitive to the force field, albeit all of the models investigated in this study support the following general conclusions: (i) ice nucleation is not present under the thermodynamic conditions and cluster-size range investigated here, i.e., the critical nuclei possess liquidlike structures, and (ii) the atmospheric concentrations of water clusters under homogeneous conditions are very low with the mole fraction of hexamers being about 10(-10), a number probably too low to influence the solar radiation balance. Compared to the experimental data, the TIP4P-pol3 model yields the most accurate nucleation results, consistent with its excellent performance for the second virial coefficient and the minimum cluster energies.  相似文献   

14.
The Van der Waals-Cahn-Hilliard gradient theory (GT) is applied to determine the structure and the work of formation of clusters in supersaturated n-nonane vapor. The results are analyzed as functions of the difference of pressures of the liquid phase and vapor phase in chemical equilibrium, which is a measure for the supersaturation. The surface tension as a function of pressure difference shows first a weak maximum and then decreases monotonically. The computed Tolman length is in agreement with earlier results [L. Granasy, J. Chem. Phys. 109, 9660 (1998)] obtained with a different equation of state. A method based on the Gibbs adsorption equation is developed to check the consistency of GT results (or other simulation techniques providing the work of formation and excess number of molecules), and to enable an efficient interpolation. A cluster model is devised based on the density profile of the planar phase interface. Using this model we analyze the dependency of the surface tension on the pressure difference. We find three major contributions: (i) the effect of asymmetry of the density profile resulting into a linear increase of the surface tension, (ii) the effect of finite thickness of the phase interface resulting into a negative quadratic term, and (iii) the effect of buildup of a low-density tail of the density profile, also contributing as a negative quadratic term. Contributions (i)-(iii) fully explain the dependency of the surface tension on the pressure difference, including the range relevant to nucleation experiments. Contributions (i) and (ii) can be predicted from the planar density profile. The work of formation of noncritical clusters is derived and the nucleation rate is computed. The computed nucleation rates are closer to the experimental nucleation rate results than the classical Becker-D?ring theory, and also the dependence on supersaturation is better predicted.  相似文献   

15.
The kinetics of nucleation is calculated for a supersaturated vapor containing molecular condensation nuclei, that is, foreign molecules able to induce the formation of viable nuclei of a condensed phase by themselves. In contrast to the previous calculation, the possibility of the escape of molecular condensation nuclei from very small clusters containing a few condensed vapor molecules is taken into account. More exact equations are derived for the rate of steady-state nucleation and the concentration of aerosol particles in a quasisteady-state regime of nucleation. The calculation demonstrates that, at a high probability of the escape of a molecular condensation nucleus, the predominating mechanism of cluster formation is the attachment of a molecular condensation nucleus to a cluster formed from vapor molecules rather than their condensation on the nucleus. At the same time, allowances for the possible escape of molecular condensation nuclei from clusters slightly affect the rate of nucleation and the concentration of aerosol particles being formed.  相似文献   

16.
自由表面的Ni原子团簇的熔化   总被引:3,自引:0,他引:3  
王丽  杨华  边秀房  李喜珍 《物理化学学报》2001,17(12):1097-1101
采用分子动力学模拟技术研究了不同尺寸的Ni原子团簇的熔化过程.团簇的最初构型为FCC结构.研究结果表明,原子团簇的熔化温度与原子团簇中原子的个数有关,团簇的熔化首先从表面开始,当外层原子成为液态后,整个团簇的熔化从液态层开始,直至核心区域.该熔化过程可以被称为非均质熔化,自由表面充当非均质形核位置.作为对比,对无自由表面的大块固态Ni的熔化过程也进行了模拟,其熔化温度高于实验温度约400 K.表明对无自由表面的大块固态的熔化过程,液相形成无非均质形核位置,熔化的本质过程受均质形核机理控制.  相似文献   

17.
A new semiphenomenological model of homogeneous vapor-liquid nucleation is proposed in which the cluster kinetics follows the "kinetic approach to nucleation" and the thermodynamic part is based on the revised Fisher droplet model with the mean-field argument for the cluster configuration integral. The theory is nonperturbative in a cluster size and as such is valid for all clusters down to monomers. It contains two surface tensions: macroscopic (planar) and microscopic. The latter is a temperature dependent quantity related to the vapor compressibility factor at saturation. For Lennard-Jones fluids the microscopic surface tension possesses a universal behavior with the parameters found from the mean-field density functional calculations. The theory is verified against nucleation experiments for argon, nitrogen, water, and mercury, demonstrating very good agreement with experimental data. Classical nucleation theory fails to predict experimental results when a critical cluster becomes small.  相似文献   

18.
Classical heterogeneous nucleation theory is used to describe the epitaxial nucleation of calcite on self-assembled monolayers (SAMs). Both spherical and faceted clusters are considered. The use of faceted clusters reveals a useful relation between the shape of very small crystals and the ratio of the heterogeneous and homogeneous nucleation barriers. The experimental approach of this paper concerns the measurement of the threshold driving forces for both homogeneous and heterogeneous nucleation of calcite. This is accomplished by preparing solutions with well-defined driving forces and by measuring the resulting types of nucleation that are observed after a fixed experimental time. The results of the experiments and the theoretical shape analysis are compared, and it is shown that in the experiments no homogeneous nucleation of calcite occurs for driving forces up to at least Deltamu/k(B)T approximately equal to 6.0. A calculation of the critical cluster size for heterogeneous nucleation results in a range of 2-28 growth units and faceted critical clusters from 3-28 growth units, depending on the value of the surface free energy of calcite. These sizes are 50-100 times smaller than the crystalline domain sizes of SAMs and therefore small enough to explain the promoting effect of the substrate.  相似文献   

19.
The excess volumes of mixing of cyclohexylamine with n-hexane, n-heptene, n-octane, n-nonane, benzene, toluene, nitrobenzene, chlorobenzene and bromobenzene have been measured at 30°C. For all systems except for n-hexane, V E is positive over the entire mole fraction range. For the n-hexane mixtures, a sigmoid curve is obtained with negative V E at high mole fraction of amine.  相似文献   

20.
The growth of Au clusters on a fullerene thin film was investigated by in situ photoelectron spectroscopy in the ultraviolet (UPS) and x-ray (XPS) regime. Due to its highly corrugated surface fullerene films provide a wide range of bonding sites which could be exploited as molecular templates and serve to create a cluster superstructure. To gain insight into the fullerene-Au interaction two types of experiments were performed: (i) the deposition of Au on a fullerene surface, and (ii) the deposition of fullerenes on a Au surface. In both experiments an island growth mode is observed. The deposition of submonolayer amounts of C60 onto a gold film showed that the main interaction of the two species is due to chemisorption of the first C60 monolayer. In addition a constant band bending in the fullerene film is detected, but the UPS valence-band spectra show that there is no charge transfer from the Au to the C60 lowest unoccupied molecular orbital. In the reverse experiment, the cluster growth of Au on the corrugated C60 surface, the analysis of the Au core level does not reveal a specific bonding or nucleation site for Au atoms and clusters. This is in contrast to observations with Si clusters, which prefer to reside in the troughs between the fullerene molecules. The Au clusters grow continually from a size of about 55 atoms for the early stages of growth up to 150 atoms for the deposition of a nominal coverage of 1.5 nm. These data are derived from an analysis of the d-band splitting and the Au 4f core-level shift due to delayed photohole relaxation. The thermal stability of the Au-clusters-covered fullerene film was investigated by annealing in situ up to temperatures of 650 degrees C. For temperatures up to 450 degrees C a continuous growth of the clusters is detected, which is accompanied by a slight drop in Au concentration in the range of XPS for annealing temperatures higher than 350 degrees C. This may be due to a ripening of the clusters. The presence of Au apparently delays fullerene sublimation. The film shows a very good thermal stability and even after annealing at 650 degrees C there is still a fullerene film detectable in the photoelectron spectroscopy spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号