首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Separation of neutral carbohydrates by capillary electrophoresis   总被引:1,自引:0,他引:1  
The basic strategies for analysis of neutral carbohydrates by capillary electrophoresis are summarized. Neutral carbohydrates are dissociated in strong alkali to give anions, hence they can be separated directly by zone electrophoresis based on the difference between their dissociation constants. However, neutral carbohydrates are not electrically charged under normal conditions. Therefore, they should be converted to ions prior to or during analysis. Precapillary introduction of a basic or an acidic group to a neutral carbohydrate gives the derivative positive (in acidic media) or negative (in alkaline media) charge, respectively. The derivatives thus obtained can be separated by zone electrophoresis. Analysis of carbohydrates in a carrier containing an oxyacid salt (such as sodium borate) or an alkaline metal salt (such as calcium acetate) causes in situ conversion to anionic or cationic complexes, respectively, which are separated by zone electrophoresis. The effective uses of electrokinetic chromatography in sodium dodecyl sulfate micelles for hydrophobic derivatives (such as 1-phenyl-3-methyl-5-pyrazolone derivatives) and size-exclusion electrophoresis in gel-packed capillaris for size different oligosaccharides are also discussed. Each separation mode has its inherent method(s) for detection, which are also described here.  相似文献   

2.
Summary The separation of derivatized carbohydrates has been performed by co-electroosmotic capillary electrophoresis. Derivatization was performed by reductive amination of the carbohydrates with ethylp-aminobenzoate or withp-aminobenzonitrile. Separation selectivity is optimized using buffer electrolytes containing high concentrations of borate, organic solvents, and mixtures thereof; this enabled separation of the carbohydrate derivatives then direct UV detection. Co-directional migration of the anionic analytes with the electroosmotic flow was achieved by adding a cationic polyer (hexadimethrine bromide, HDB) to the electrolyte. With this method it is possible to determine specific carbohydrates, such as arabinose, mannose, and glucose, which are difficult to separate by other CE methods. The applicability of the method is demonstrated for the analysis of plant hydrolyzates  相似文献   

3.
The separation of two highly negatively charged enantiomeric organic disulfates containing two chiral centers was investigated by capillary electrophoresis using cyclodextrin based chiral selectors added to the run buffer. The optimum separation for the enantiomers was achieved in less than 3 min at 25 degrees C with a run buffer of 10 mM glycine pH 2.4 and 5 mM QA-beta-CD, which is a positively charged quaternary ammonium beta-cyclodextrin derivative. The method resulted in baseline resolution, excellent linearity, and highly reproducible migration times allowing facile evaluation of the enantiomeric purity of the individual isomers. Detection limits for the enantiomeric pair were determined to be 0.3 ng/microl (S/N = 3). The nature of the selector-enantiomer interaction and a quantitative measurement of the apparent stability constants that governed chiral discrimination of the enantiomers with QA-beta-CD were also investigated by UV-Vis spectroscopy and electrospray ionization mass spectrometry.  相似文献   

4.
Reversed-phase capillary electrochromatography in a 5-microm C18 fully packed capillary was employed to optimize the separation of negatively charged nonsteroidal anti-inflammatory drugs. The effect of the physico-chemical parameters and different analysis modes on the separation of 2-arylpropionic acids was studied and evaluated. The mobile phase composition, buffer type, concentration and pH differently influenced the peak efficiency and resolution, selectively modulating the analytes interaction with the stationary phase. The use of zwitterionic MES or acetate mobile phases strongly modulated the analytes migration order and peak efficiency. The optimum experimental conditions were found in MES buffer, pH 5.0, containing the 75% acetonitrile-methanol (1:1). All the analytes were baseline separated in a mixture in less than 13 min with peak efficiencies in the range of 78,500-84,200 N/m. Under these conditions the analytes were negatively charged and their effective electrophoretic mobilities played a role in the separation. The analysis of different pharmaceutical preparations containing anti-inflammatory drugs, e.g. drops and tablets, is also presented after a very simple sample pretreatment.  相似文献   

5.
Two newly developed UV transparent phosphonium-based cationic reagents were evaluated as background electrolyte additives for capillary electrophoresis for the separation of multiply charged anions, including several complex anions. These cationic reagents showed moderate suppression of the electroosmotic flow, interacted with the analytes to improve their separation and often improved the peak shape. The effects of the additives and their concentration on the separation were studied, as well as the buffer type, pH, and voltage. The dicationic reagent effectively separated eight divalent anions within 17 min and the tetracationic reagent best separated nine trivalent anions, as well as a mixture of all the anions.  相似文献   

6.
Employing capillary electrophoresis, the racemates of 29 acidic, neutral and basic dihydropyridines (DHPs) were separated by means of neutral and negatively charged cyclodextrins (CDs). Whereas the enantiomers of the acidic DHPs could be resolved with neutral CDs, mostly alpha- and beta-CD, the enantiomers of the neutral DHPs were only baseline-separated using the sulfobutyl ether-substituted beta-CD. Working in reversed polarity mode (detector at the anode) improved the peak shape and the resolution of the enantiomers. The racemates of the DHP bearing a secondary or tertiary amine function in the side chain at position 3 could be separated by using either the neutral gamma-CD or negatively charged CDs. The poor peak shape found with anionic CDs could be improved by the addition of methanol. The combination of gamma-CD and sulfated beta-CD allowed the detection of the minor enantiomer of lercanidipine (24) at less than 1% w/w.  相似文献   

7.
Jin LJ  Li SF 《Electrophoresis》1999,20(17):3450-3454
Carbohydrate analysis of urine is clinically important in assisting diagnosis of disorders of carbohydrate metabolism and understanding its pathologic significance. Paper chromatography and thin-layer chromatography are the techniques that are often employed for the determination of urinary carbohydrates. An aim of our experiments was to investigate the utility of capillary electrophoresis to develop a fast screening procedure of urinary carbohydrates. Simultaneous resolution of eight carbohydrates involving maltose, lactose, D-mannose, D-glucose, D-ribose, D-xylose, L-arabinose and D-galactose as markers was obtained with 130 mM borate (pH 10.2). Ethanol/water (80/20 v/v) and acetonitrile proved to be efficient reagents for urine sample clean-up which produced symmetrical peaks. The urine sample from a normal subject was determined to contain lactose, glucose, xylose and arabinose that fall within normal ranges of these carbohydrates in urine. The investigations made in this study may be potentially useful in carbohydrate screening, especially in neonatal urine screening.  相似文献   

8.
Differences in the surface charges of bacteria can be exploited for their separation by capillary electrophoresis. Because of their low electrophoretic mobility, the separation is not always easy to perform, especially in the presence of the electroosmotic flow. Elimination of electroosmotic flow by capillary wall modification with γ‐(trimethoxysilyl)propyl methacrylate followed by acrylamide bonding permits separation over a distance of 8.5 cm.  相似文献   

9.
The potential of using capillary electrophoresis frontal analysis for the study of low-molecular-weight ligand-polyelectrolyte interactions was assessed. The interaction of the ligands 1-propylpyridinium bromide, 2-propylisochinolinium bromide, and paraquat with the polymer dextran sulfate was investigated as a function of polymer concentration and ionic strength of the buffer solution. Linear binding isotherms were obtained and association constants were determined. The complex formation was independent of the dextran sulfate concentration at low ionic strength. Ligand-polyelectrolyte interactions were strongly dependent on the ionic strength. The interaction of the divalent cation paraquat with the dextran sulfate was much stronger than the interactions of the monovalent cationic ligands with the polyelectrolyte. The binding data obtained were in accord with results obtained by equilibrium dialysis. Capillary electrophoresis frontal analysis has the potential to become a valuable tool for characterization of ligand-polyelectrolyte interactions in drug design as well as in other areas.  相似文献   

10.
Capillary electrophoresis (CE) was applied as a fast method of siderophore separation. Siderophores are iron binding and regulating cell products, which facilitate iron transport into cells. A fast and efficient method of siderophore analysis is important for better understanding of the iron pathways in a sea environment or marine organisms. The best results of CE analysis were obtained using free zone CE in 25 mM phosphate buffer at basic pH using a constant voltage of 20 kV. Under these conditions it was possible to detect the presence of siderophores in seawater.  相似文献   

11.
Detection of carbohydrates in capillary electrophoresis   总被引:3,自引:0,他引:3  
This review focuses on recent developments in sensitive detection modes for carbohydrates after separation by capillary electrophoretic methods. To bring detection sensitivity for carbohydrates analysis in line with current methods in protein sequencing, concentration detection limits of 10−6 molar or better are requires. A discussion of mass detection limits and concentration detection limits is followed by an overview of detection modes for natural and labeled carbohydrates. Amperometric detection and UV and laser-induced fluorescence detection after reductive amination, in particular with 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS), are discussed in more detail. Finally, the paper outlines developments to be expected in the near future, focusing on the needs in glycobiology such as improved sensitivity and selectivity.  相似文献   

12.
The influence of buffer composition and pH on the electrophoretic behavior of diadenosine polyphosphates with a phosphate chain ranging from two to five phosphate groups has been examined. The electrophoretic mobility in carbonate buffer increases according to the number of phosphates, whereas in borate buffer the mobility changes in an irregular way as a function of pH. This finding can be rationalized by a well-known interaction of borate with ribose rings, which modifies the charge and the hydrodynamic radius of each diadenosine polyphosphate in a different way. Our study shows that the best separation of diadenosine polyphosphates can be achieved at the highest pH values of the range examined both in borate and carbonate buffers.  相似文献   

13.
A number of experimental parameters have been optimized for the separation of 26 metal ions, including alkali, alkaline earth, transition and lanthanide metal ions. Experimental parameters that were evaluated included nature of indirect-detection reagent, pH of electrolyte, concentration of complexing agent and nature of the surface of the capillary; unbonded and C1 and C18 bonded phases were studied. In addition the effect of internal diameter on linearity and signal-to-noise ratio was examined, and separation efficiency was determined for a variety of experimental conditions. Detection limits (signal-to-noise RATIO = 3) were ca. 1 μg/ml for the lanthanides, ca. 0.6 μg/ml for transition and alkaline earth ions and ca. 0.1–0.8 μg/ml for alkali metal ions. The average relative standard deviations of were 3.7, 5.1 and 2.5% on unbonded, C1 and C18 capillaries, respectively. Whereas conventional regression analysis suggested that the calibration curves were linear over the range of 1·10−5 to 4·10−4 mol/l, sensitivity plots showed that the results were actually linear to within 6% only over the range of 2.5·10−5 to 4·10−4 mol/l.  相似文献   

14.
Separation conditions suitable to a rapid resolution of a group of eight nitrophenols by capillary zone electrophoresis (CZE) were found. Required differences in their effective mobilities were achieved via host-guest complexation of -cyclodextrin combined with intermolecular interactions involved by polyvinylpyrrolidone. When both additives were present in the carrier electrolyte at pH=9.1 nitrophenols could be separated in the column of a, 300 m I.D. and 180 mm in the length within 8–9 minutes. It is shown that the column of such an I.D. providing enhanced sample load capacity, can operate with high separation efficiencies as maintaining zone dispersions due to Joule heating on a tolerable level. CZE on-line coupled with isotachophoretic sample pretreatment is shown to provide the concentration limits of detection at low ppb concentrations by using an on-column photometric detector operating at 254 and 405 nm detection wavelengths.  相似文献   

15.
Separation of non UV-absorbing cations by capillary electrophoresis   总被引:1,自引:0,他引:1  
Summary A new buffer system for the separation of cations with capillary electrophoresis using indirect UV-detection is described. p-Aminopyridine can be used in the wide pH-range between 3 and 10. High-speed separations of positively charged non-UV absorbing ions are possible. Separation of ions with similar mobilities can be achieved by the addition of complexation reagents. The separation of potassium and ammonium is possible either with the addition of crown ether or at high pH-values. Transition metals can be separated by adding 2-hydroxybutyric acid to the buffer.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

16.
We describe a method for the simultaneous determination of the five fibrinopeptide forms derived from the thrombin-promoted activation of human fibrinogen by capillary zone electrophoresis (CZE). The fibrinopeptide mixture was first desalted by a solid-phase extraction (SPE) step. The analysis was performed in reversed polarity in a highly cross-linked polyethylene glycol (PEG)-coated capillary with UV-light absorption detection at 200 nm. Several parameters including buffer concentration and pH, presence of an organic modifier, temperature, and applied voltage, have been tested. The best separations were obtained within 20 min, utilizing a 20 mM sodium phosphate buffer without organic modifier, in the narrow 6.1-6.2 pH range, at 25 degrees C, with an applied voltage of 20 kV. Quantitative analysis is made possible by the use of sheep fibrinopeptide A as an internal standard to correct for both extraction and injection errors.  相似文献   

17.
Due to the importance of application of lanthanides in various industries especially the nuclear ones, and the advantages of capillary electrophoresis method in separation of metal cations, this research was carried out in order to investigate the separation potential of lanthanides using capillary electrophoresis via simulation method at laboratory scale. Since the properties of various types of lanthanides are very similar, the separation of lanthanides using the usual approaches was not possible. Thus, the separation of lanthanides was devised upon partial, competing complexation in order to differentiate their properties. Salicylic acid was firstly used as the primary UV-absorbing ligand, whereas formic, acetic, lactic, tartaric and citric acids, which showed no absorption in UV-spectrum and had weaker complexes in comparison to salicylic acid, were used as auxiliary ligands. Upon the results of spectrometry, the wave length of 210 nm was selected for detecting lanthanides. The properties and stability of lanthanides were examined and furthermore acetic and citric acids were selected as auxiliary ligands. The simulation was carried out with respect to the transport phenomena in the unsteady state. The ion species dissociation was found to be directly dependent upon the concentration, and was also used in complexation. The results of simulation showed that the diffusion control of H+ and homogenizing electrical field promoted separation quality. The separation conditions were optimized by using the simulation results as well as the tests obtained. In order to optimize the experimental conditions, variable factors such as voltage, injection time, pH, temperature and ionic strength were examined. Also, methanol was used as dissolving modifier as well as noise reducer on the base line. Sodium nitrate was used as ionic strength controller and sucrose for increasing viscosity which optimized separation quality.  相似文献   

18.
This study demonstrates the separation of cold medicine ingredients (e.g., phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol) by capillary zone electrophoresis and micellar electrokinetic chromatography. Factors affecting their separations were the buffer pH and the concentrations of buffer, surfactant and organic modifiers. Optimum results were obtained with a 10 mM sodium dihydrogen-phosphate-sodium tetraborate buffer containing 50 mM sodium dodecyl sulfate (SDS) and 5% methanol (MeOH), pH 9.0. The carrier electrolyte gave a baseline separation of phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol with a resolution of 1.2, and the total migration time was 11.38 min.  相似文献   

19.
A method for the determination of underivatized carbohydrates using capillary electrophoresis (CE) with detection by electrospray ionization-mass spectrometry (ESI-MS) presented. Highly alkaline carrier electrolytes based on volatile organic bases like is diethylamine (DEA) combined with MS detection in the negativ-ion mode proved to be the optimum solution for the separation and detection of these analytes. Optimization of the carrier electrolyte composition has been performed with respect to its pH, ionic strength as well as the addition of an organic modifier. The influence of the DEA concentration in the sheath liquid on parameters like peak shapes or signal-to-noise (S/N) ratios was also investigated. Limits of detection (LOD) were in the range of 0.5-3.0 mgL(-1) and calibration was linear over an order of magnitude for almost all solutes investigated. Finally, the applicability of this method for the analysis of real samples was demonstrated with wine samples.  相似文献   

20.
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号