首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Jang JS  Jin F  Javidi B 《Optics letters》2003,28(16):1421-1423
We present an integral imaging method to enhance the depth of a three-dimensional image by displaying it throughout real and virtual image fields. When the product of depth and resolution square of the displayed three-dimensional image is used as a figure of merit in integral imaging systems, our method can maximize this merit especially when three-dimensional images with large depth of focus are displayed. The feasibility of our method is experimentally demonstrated by generation of elemental images by a computer.  相似文献   

2.
基于立体像素匹配的图像重构技术研究   总被引:1,自引:0,他引:1  
朴燕 《光子学报》2008,37(12):2560-2563
为了解决目前全景成像技术中分辨率低的问题,提出了一种新的基于3D场景立体像素光线映射的全景图像计算机重构技术.在全景成像技术中,3D场景的每个立体像素点经全景成像系统的编码系统分别映射在一定区域的多个体元素图像的不同像素点上.在计算机重构全景图像时,根据逆光学路径原理,提出了从立体像素映射到的体元素图像区域中提取对应立体像素的多个2D像素点来重构全景图像,使重构的全景图像最大分辨率可达到传统成像方法图像分辨率的N倍(N为映射区域面积).提出的立体像素的匹配技术大大提高了重构的计算机全景图像分辨率.  相似文献   

3.
In this paper, we propose an architecture based on camera array with masks to enhance the sensor resolution of remote imaging system. The sensor resolution is enhanced by multiplexing the sensor images of each camera, in which the angular resolution bandwidth is converted using masks to expand the spatial resolution bandwidth. The improvement of the sensor resolution depends on the number of cameras in the array. The theory of improving the sensor resolution is discussed both in Fourier domain and spatial domain. We verify resolution enhancement of the architecture by ray-tracing imaging simulation. A simulation model is built to verify the resolution-enhancing ability of the camera array architecture. From each camera in the array, we get a resolution-limited image. The reconstructed image is synthesized from all the images of the cameras. The post-synthesized image has finer information details compared with the images of each camera. The resolution improvement varies with the object distance. The optimal resolution improvement of the reconstructed image is equal to the total sensor pixels of the camera array.  相似文献   

4.
A new confocal scanning laser microscope/macroscope (cslm/M) has recently been developed. It combines in one instrument the high resolution capability of a confocal scanning beam microscope for imaging small specimens, with good resolution confocal imaging of macroscopic specimens. Some of its main features include: (a) 0.25 μm lateral resolution in the microscope mode and 5 μm lateral resolution in the macroscope mode; (b) a field of view that can vary from 25 μm × 25 μm to 75,000 μm × 75,000 μm; (c) capability for acquiring large data sets from 512 × 512 pixels to 2048 × 2048 pixels; (d) 0.5 μm depth resolution in the microscope mode and 200 μm depth resolution in the macroscope mode.

In this work the cslm/M was used to image whole biological specimens (> 5 m diameter), including insects which are ideal specimens for the macroscope. Specimens require no preparation, unlike scanning electron microscope (SEM) specimens which require a conductive coating. The specimens described in this paper are too large to be imaged in their entirety by a scanning beam laser microscope, however they can be imaged by slower scanning stage microscopes. In the macroscope mode the cslm/M was used to acquire a large number (e.g. 20–40) of confocal image slices which were then used to reconstruct a three-dimensional image of the specimen. High resolution images were collected by the cslm/M by switching to the microscope mode where high numerical aperture (NA) objectives were used to image a small area of interest. Reflected-light and fluorescence images of plant and insect specimens are presented which demonstrate the morphological details obtained in various imaging modes. A process for three-dimensional visualization of the data is described and images are shown.  相似文献   


5.
In this Letter, we propose a three-dimensional(3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overlapping number of pixels coming from the elemental images by using the subpixel distance based on ray optics between a 3D object and an image sensor. The use of a controllable overlapping number enables us to provide an improved 3D image visualization by controlling the inter-pixel interference within the reconstructed pixels.To find the optimal overlapping number, we simulate the pickup and reconstruction processes and utilize the numerical reconstruction results using a peak signal-to-noise ratio(PSNR) metric. To demonstrate the feasibility of our work in optical experiments, we carry out the preliminary experiments and present the results.  相似文献   

6.
In this paper, we propose a post-processing technique to obtain optical microscope images with extended depth of focus using a conventional microscope. With the proposed technique, we collect a sequence of images focused at different depths. We then combine the in-focus regions of each acquired frame to compose a single all-in-focus image. That is, a new image with extended depth of focus is obtained. The key to such an algorithm is in selecting the “in-focus” regions from each frame. In this paper, we describe the technique used to identify the in-focus region on every depth slice. Quantitative simulation results are presented where mean absolute error is used as a metric to assess the algorithm performance. Results using real imagery are also presented for subjective evaluation. Based on subjective evaluation and the quantitative simulation results, we believe that the proposed algorithm provides useful depth of focus extension.  相似文献   

7.
针对多聚焦图像,提出一种基于图像分块的融合方法。将源图像分为大小相同数量相等的子块,采用能量梯度算子作为对焦评价函数,计算各个图像子块能量梯度匹配度,设置匹配度阈值分离出源图像中的清晰区域。源图像中的清晰区域直接作为融合图像相应的区域,其它区域的处理中,构造与相应子块能量梯度大小相关的图像序列,以及像素点到各个子块中心距离相关的融合函数,然后用融合函数对图像序列融合。实验结果表明该方法有效性和合理性。  相似文献   

8.
A semiconductor device, a microSD card, was measured by using two XRF instruments. 2D elemental images were obtained using a micro‐XRF system with a spatial resolution of 10 µm. Elemental distributions of the near‐surface region of the sample were clearly shown. Titanium was observed in the resin constituting the sample. Nickel and gold were observed on a terminal and localization of the sample. Elemental distribution of copper reflected the circuit structure of the measurement area that was in the neighborhood of the sample surface. Moreover, the elemental depth distributions of the sample were measured by using a confocal micro‐XRF instrument. The confocal micro‐XRF instrument was constructed in the laboratory with fine‐focus polycapillary x‐ray optics. The depth resolution of the developed spectrometer was 13.7 µm at an energy of Au Lβ (11.4 keV). The elemental images obtained at near‐surface by confocal micro‐XRF were the same as the results obtained from 2D micro‐XRF. However, different Cu images were obtained at a depth of several tens of micrometers. This indicates that microSD cards consist of a few different Cu‐circuit structure designs. The elemental depth distributions of each circuit structure of the semiconductor device were clearly shown by confocal micro‐XRF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Shin D  Javidi B 《Optics letters》2012,37(11):2130-2132
In this Letter, we propose an improved three-dimensional (3D) image reconstruction method for integral imaging. We use subpixel sensing of the optical rays of the 3D scene projected onto the image sensor. When reconstructing the 3D image, we use a calculated minimum subpixel distance for each sensor pixel instead of the average pixel value of integrated pixels from elemental images. The minimum subpixel distance is defined by measuring the distance between the center of the sensor pixel and the physical position of the imaging lens point spread function onto the sensor, which is projected from each reconstruction point for all elemental images. To show the usefulness of the proposed method, preliminary 3D imaging experiments are presented. Experimental results reveal that the proposed method may improve 3D imaging visualization because of the superior sensing and reconstruction of optical ray direction and intensity information for 3D objects.  相似文献   

10.
The combination of a pn‐junction charge‐coupled device‐based pixel detector with a poly‐capillary X‐ray optics was installed and examined at the Helmholtz‐Zentrum Dresden‐Rossendorf. The set‐up is intended for particle‐induced X‐ray emission imaging to survey the trace elemental composition of flat/polished geological samples. In the standard configuration, a straight X‐ray optics (20 μm capillary diameter) is used to guide the emitted photons from the sample towards the detector with nearly 70 000 pixels. Their dimensions of 48 × 48 μm2 are the main limitation of the lateral resolution. This limitation can be bypassed by applying a dedicated subpixel algorithm to recalculate the footprint of the photon's electron cloud in the detector. The lateral resolution is then mainly determined by the capillary's diameter. Nevertheless, images are still superimposed by the X‐ray optics pattern. The optics' capillaries are grouped in hexagonal bundles resulting in a reduced transmission of X‐rays in the boundary regions. This influence can be largely suppressed by combining a series of short measurements at slightly shifted positions using a precision stage and correcting the image data for this shifting. The use of a subpixel grid for the image reconstruction allows a further increase of the spatial resolution. This approach of image‐stacking and multiframe super‐resolution in combination with the subpixel correction algorithm is presented and illustrated with experimental data. Additionally, a flat‐field correction is shown to remove the remaining imaging inhomogeneity caused by non‐uniform X‐ray transmission. The described techniques can be used for all X‐ray spectrometry methods using an X‐ray camera to obtain high‐quality elemental images.  相似文献   

11.
针对全自动光学显微镜系统中,传统聚焦窗口选择方法易受图像内容分布、杂质、噪声等因素干扰的问题,提出一种根据内容像素变化量选择聚焦窗口的方法。该方法将灰度差像素数量与边缘像素数量加权作为内容像素数量,据此衡量失焦模糊状态下子块内容含量并划分聚焦窗口,减少杂质与噪声对取窗过程的影响;用降采样后图像各子块内容含量估计原图像内容分布信息,降低图像滤波、梯度计算过程的计算量;使用局部标准差与锐利边缘像素数量联合检测焦平面图像的失焦模糊区域,有效排除玻片杂质造成的焦平面误判。与传统的显微镜自动聚焦取窗方法相比,对内容丰富程度和分布状况不同的显微图像序列,该方法均能获取有效的聚焦窗口,像素梯度均值更高,所得的评价曲线局部极值极少,尖锐性好,因此该方法的成功率高,鲁棒性更强。  相似文献   

12.
大焦深成像系统的特性研究   总被引:1,自引:0,他引:1  
如何增大非相干光学成像系统的焦深已成为一项有意义的研究主题,为了增大焦深,通常的做法是缩小相对孔径,但这种做法会降低光学系统的光通量、调制传递函数(MTF)及分辨率,而大焦深成像系统通过在光学系统光路中加入一特殊设计的非球面掩摸板,并用图像处理技术对相位掩模板编码后的图像进行解码得到清晰图像,保证了光学系统在维持原有相对孔径的同时扩大其焦深范围,使光学系统在离焦范围内有好的图像质量,从光学图和系统的MTF两个方面对大焦深成像系统的特性进行了分离,并对结果进行了讨论。  相似文献   

13.
We present a technique to overcome the depth resolution limitation for 3D active imaging. Applying microsecond laser pulses and sensor gate width, a scene of several hundred meters is illuminated and recorded in a single image. The trapezoid-shaped range intensity profile is analyzed to obtain both the reflectivity and the depth of scene. We demonstrate a 3D scene reconstruction in a depth of 650 to 1550 m from only three images with an accuracy of <30 m. This depth accuracy is 10 times better than estimated from the classical resolution limit obtained for depth scanning active imaging with a similar number of images. Therefore, this technique enables superresolution depth mapping with a reduction of image data processing.  相似文献   

14.
Video sensor network usually uses fairly low-resolution images due to the limited transmission bandwidth in transmitting images. It is potential to enhance the captured low-resolution images using image resolution enhancement technique that is able to produce a high-resolution image from its low-resolution counterpart. The key challenge of image resolution enhancement is to preserve the edge structure in images. In this paper, a new image resolution enhancement approach is proposed to estimate the intensity of the unknown pixel using a bilateral weighted average of that of its neighboring pixels. More specifically, the neighboring pixels with nearer distance have larger contributions. Furthermore, the neighboring pixels belonging to direction with smaller variation have larger contributions. Experimental results are provided to show that the proposed approach outperforms several conventional edge-directed image interpolation algorithms. Furthermore, the proposed approach yields low computational complexity; it is potential for real-time implementation.  相似文献   

15.
The goal of image interpolation is to produce a high-resolution image from its low-resolution counterpart. It has significant applications in video sensor network, where the resolution of images usually needs to be enhanced at the end user due to the limited transmission bandwidth. The key challenge of image interpolation is to preserve the edge structure of the image. In this paper, a new image interpolation approach is proposed to adaptively adjust the interpolation according to the directional variations of images. More specifically, at each pixel position to be interpolated, its neighboring pixels are projected onto 1D direction according to a number of proposed patterns. Then the direction, of which the variation is smallest, is chosen as the direction to perform image interpolation. Experimental results are provided to show that the proposed approach outperforms several conventional edge-directed image interpolation algorithms.  相似文献   

16.
Depth from focus(DFF) is a technique for estimating the depth and three-dimensional(3D) shape of an object from a multi-focus image sequence. At present, focus evaluation algorithms based on DFF technology will always cause inaccuracies in deep map recovery from image focus. There are two main reasons behind this issue. The first is that the window size of the focus evaluation operator has been fixed. Therefore, for some pixels, enough neighbor information cannot be covered in a fixed window and is easily disturbed by noise, which results in distortion of the model. For other pixels, the fixed window is too large, which increases the computational burden. The second is the level of difficulty to get the full focus pixels, even though the focus evaluation calculation in the actual calculation process has been completed. In order to overcome these problems, an adaptive window iteration algorithm is proposed to enhance image focus for accurate depth estimation. This algorithm will automatically adjust the window size based on gray differences in a window that aims to solve the fixed window problem.Besides that, it will also iterate evaluation values to enhance the focus evaluation of each pixel. Comparative analysis of the evaluation indicators and model quality has shown the effectiveness of the proposed adaptive window iteration algorithm.  相似文献   

17.
Full-field soft X-ray microscopy in combination with X-ray magnetic circular dichroism as contrast mechanism is a powerful technique to image with elemental specificity magnetic nanostructures and multilayered thin films at high lateral resolution down to 15nm by using Fresnel zone plates as X-ray optical elements. Magnetization reversal phenomena on a microscopic level are studied by recording the images in varying external magnetic fields. Local spin dynamics at a time resolution below 100ps can be addressed by engaging a stroboscopic pump-and-probe scheme taking into account the time pattern of synchrotron storage rings. Characteristic features of magnetic soft X-ray microscopy are reviewed and an outlook into future perspectives with regard to increased lateral and temporal resolution is given.  相似文献   

18.
A robust image encryption method by using the integral imaging and pixel scrambling (PS) techniques is proposed. In this method, pixels of the cover image are scrambled with the PS technique and elemental images for this scrambled image are picked up through a lenslet array. Subsequently, an encrypted image is obtained by scrambling these picked-up elemental images. Since this encrypted image has the hologram-like property of data redundancy resulted from the integral imaging scheme, while it can as well be decoded by multiple keys such as the orders of pixel scrambling and the pickup conditions of the elemental images, its security against the various attacks could be dramatically improved. Good experimental results also confirm that the proposed method could provide more enhanced robustness against data loss and Gaussian noises compared to the conventional methods.  相似文献   

19.
Liu L  Liu C  Howe WC  Sheppard CJ  Chen N 《Optics letters》2007,32(16):2375-2377
We report a novel scheme to optimize the focusing condition for real-time, swept-source optical coherence microscopy. The axial and lateral behaviors of four-zone binary-phase spatial filters are presented numerically. A nearly constant axial intensity distribution along an extended depth of focus of 1.5 mm and a lateral resolution of 5 microm are experimentally verified. The A-line scan rate is up to 16 kHz, yielding a frame rate of 25 Hz and 640 lines per image.  相似文献   

20.
The modified synthetic transmit aperture (STA) algorithm is described. The primary goal of this work was to assess the possibility to improve the image quality achievable using synthetic aperture (SA) approach and to evaluate the performance and the clinical applicability of the modified algorithm using phantoms. The modified algorithm is based on the coherent summation of back-scattered RF echo signals with weights calculated for each point in the image and for all possible combinations of the transmit-receive pairs. The weights are calculated using the angular directivity functions of the transmit-receive elements, which are approximated by a far-field radiation pattern of a narrow strip transducer element vibrating with uniform pressure amplitude over its width. In this way, the algorithm takes into account the finite aperture of each individual element in the imaging transducer array. The performance of the approach developed was tested using FIELD II simulated synthetic aperture data of the point reflectors, which allowed the visualization (penetration) depth and lateral resolution to be estimated. Also, both simulated and measured data of cyst phantom were used for qualitative assessment of the imaging contrast improvement. The experimental data were obtained using 128 elements, 4 MHz, linear transducer array of the Ultrasonix research platform. The comparison of the results obtained using the modified and conventional (unweighted) STA algorithms revealed that the modified STA exhibited an increase in the penetration depth accompanied by a minor, yet discernible upon the closer examination, degradation in lateral resolution, mainly in the proximity of the transducer aperture. Overall, however, a considerable (12 dB) improvement in the image quality, particularly in the immediate vicinity of the transducer’s surface was demonstrated. The modified STA method holds promise to be of clinical importance, especially in the applications where the quality of the “near-field” image, that is the image in the immediate vicinity of the scanhead is of critical importance such as for instance in skin- and breast-examinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号