首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

2.
蒲小华  陈绘丽  韩高义  杨频 《化学学报》2007,65(15):1464-1468
合成了两个钌多吡啶配合物[Ru(bpy)2DMNP](C1O4)2 (Ru1)和[Ru(bpy)2BOPIP](C1O4)2 (Ru2), 应用元素分析、核磁共振对配合物结构进行了表征, 通过电子吸收光谱、荧光光谱、粘度实验以及凝胶电泳技术对配合物与DNA相互作用的性质进行了研究. 结果表明, 配合物与DNA分子之间以插入模式结合. 在紫外光照下, 两种配合物均能使质粒pBR322DNA断裂, 机理研究表明, 其光断裂DNA的活性氧化物种为单线态氧.  相似文献   

3.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

4.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

5.
The novel mixed ligand complexes [M(bpy)(phen-dione)](PF6)2 (M?=?Zn(II), Cd(II) and Hg(II), bpy?=?2,2-bipyridine and phen-dione?=?1,10-phenanthroline-5,6-dione) have been synthesized and characterized by elemental analysis, IR, 1H NMR and electronic absorption spectroscopies. The ν(C=O) of coordinated phen-dione in these complexes are very similar to the free phen-dione ligand showing that phen-dione is not coordinated to metal ion from its C=O sites. Absorption spectra of the complexes show two absorption bands for intraligand transitions. These absorption bands show dependence to the dielectric constant of solvent. These complexes exhibit an intensive fluorescence band around 535?nm in DMF when the excitation wavelength is 260?nm at room temperature. The fluorescence intensity of these complexes is larger than that of the free ligand.  相似文献   

6.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
1H, 13C and 15N NMR studies of iron(II), ruthenium(II) and osmium(II) tris‐chelated cationic complexes with 2,2′‐bipyridine and 1,10‐phenanthroline of the general formula [M(LL)3]2+ (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature 1H signal assignments were corrected. Significant shielding of nitrogen‐adjacent protons [H(6) in bpy, H(2) in phen] and metal‐bonded nitrogens was observed, being enhanced in the series Ru(II) → Os(II) → Fe(II) for 1H, Fe(II) → Ru(II) → Os(II) for 15N and bpy → phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) → Os(II) → Fe(II). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Three Ru(II) complexes [Ru(bpy)2(1-IQTNH)](ClO4)2 (1), [Ru(bpy)2(2-QTNH)](ClO4)2 (2) and [Ru(bpy)2(3-IQTNH)](ClO4)2 (3) (bpy = 2,2′-bipyridine, 1-IQTNH = 6-(isoquinolin-1-yl)-1,3,5-triazine- 2,4-diamine, 2-QTNH = 6-(quinolin-2-yl)-1,3,5-triazine- 2,4-diamine, 3-IQTNH = 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The electrochemical and spectroscopic properties of the complexes differ from those of [Ru(bpy)3]2+ owing to the structural differences between the ligands and their complexes.  相似文献   

9.
An intercalative ligand, ppip (ppip = {2-(4-(piperidin-1-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}), and its mononuclear Ru(II) polypyridyl complexes, [Ru(phen)2(ppip)]2+ (1) (phen=1,10-phenanthrolene), [Ru(bpy)2(ppip)]2+ (2) (bpy=2,2′-bipyridine) and [Ru(dmb)2(ppip)]2+ (3) (dmb=4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis and spectroscopic techniques such as UV–vis, IR, 1H, as well as 13C NMR and ESI-MS. The interaction of these complexes with DNA/BSA (bovine serum albumin) was investigated using absorption, emission spectroscopy, viscosity measurements and molecular docking studies. The docking study infers that the binding strength (Kb) of these complexes was in agreement with results from absorption and emission techniques. These studies reveal that these three Ru(II) polypyridyl complexes bind to DNA/BSA. The binding ability of these complexes in the presence of different ions and solvents were also reported. All complexes were effectively cleaving pBR322 DNA in different forms and follows order which is similar to absorption and emission studies. These complexes were effective exhibiting the antimicrobial activity against different microbes Bacillus subtilis, Escherichia coli and Staphylococcus aureus.  相似文献   

10.
A series of ruthenium (II) complexes, [Ru(bpy)2L]X2 (L = L1, L2; X = Cl, PF6, SCN), were synthesized based on bipyridine and two novel diimine ligands L1 and L2 (L1 = 1-(4-5′-phenyl-1,3,4-oxadiazolylphenyl)-2-pyridinyl-benzoimidazole, L2 = 1-(4-carbazolylphenyl)-2-pyridinylbenzimidazole); and the crystal structure of [Ru(bpy)2L1]Cl2 was also described. [Ru(bpy)2(Pybm)]X2 (Pybm = 2-(2-pyridine)benzimidazole) complexes were also prepared as reference samples. In the UV-vis absorption spectra there are one strong π → π* transition and two dπ (Ru) → π* transitions. By comparisons of photoluminescence properties between [Ru(bpy)2L]X (L = L1, L2) and the reference complexes we find that the complexes with carrier-transporting groups of carbazole and oxadizole have the higher emission intensity and quantum efficiency. One reversible oxidation process in the range 0.80-1.00 V exists in each of the complexes which is assigned to the metal oxidation, [Ru(III)(bpy)2L]2+ + e?[Ru(II)(bpy)2L]+.  相似文献   

11.
A series of Ru(II) complexes were synthesized with the deprotonated forms of the ligands 8-hydroxyquinoline (quo) and 5-NO2-8-hydroxyquinoline (5-NO2-quo) as analogs to the prototypical complex [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine). Electrochemistry, spectroscopy and density functional theory calculations were utilized to investigate the electronic tuning of the occupied t2g-type orbitals of the metal center with variation in the ligation sphere. The maximum of the lowest energy absorption of complexes containing one, two and three 8-quinolate ligands progressively redshifts from 452 nm in [Ru(bpy)3]2+ to 510 nm in [Ru(bpy)2(quo)]+, 515 nm in [Ru(bpy)(quo)2] and 540 nm in [Ru(quo)3] in water. This bathochromic shift results from the increase in energy of the occupied t2g-type orbital across the series afforded by coordination of each subsequent quo ligand to the Ru(II) center. Time-dependent density functional theory calculations along with electrochemical analysis reveals that the lowest energy transition has contributions in the highest occupied molecular orbital from both the quo ligand and the metal, such that the lowest energy transition is not from an orbital that is purely metal-centered in character as in [Ru(bpy)3]2+.  相似文献   

12.
Two new Ru(II) complexes, [Ru(bpy)2(pmip)]2+ (1) and [Ru(phen)2(pmip)]2+ (2), have been synthesized and characterized by elemental analysis, ESI-MS and 1H NMR spectra. Their DNA-binding properties were studied by means of UV–VIS, emission and CD spectra, thermal denaturation and viscosity measurements as well as their DNA-photocleavage properties. The experimental results show that both 1 and 2 can bind to DNA in an intercalative mode; the DNA-binding affinity of 2 is greater than that of 1, which suggests that the ancillary ligands have a significant effect on the spectroscopic properties and DNA-binding behavior of the Ru(II) complexes. Under irradiation with UV light, the Ru(II) complexes show excellent efficiency of cleaving DNA. This research may provide valuable insight into the interactions of metal complexes with DNA, knowledge that is an excellent backdrop for the rational design of promising drugs.  相似文献   

13.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

14.
Quantum-chemical method of the density functional theory was employed to calculate, with the use of a B3LYP hybrid exchange-correlation functional, the IR absorption and Raman spectra of [Ru(bpy)2(CN)2] and [Ir(bpy)2(CN)2]+ complexes. All the normal vibrational frequencies were analyzed and new assignments of a number of bands in the IR absorption and Raman spectra were made. The role of vibrational motions of metal atoms and ligands in the vibronic deformation of electron shells in the course of electron transfer was discussed. This was done using data on surface-enhanced Raman spectra of [Fe(bpy)2(CN)2] and [Ru(bpy)3]2+ complexes adsorbed on the surface of colloid silver.  相似文献   

15.
Two polypyridyl ligands, 5-(4′-ethynylbenzo-15-crown-5)-2,2′-bipyridine (L1) and 3-bromo-8-(4′-ethynylbenzo-15-crown-5)-1,10-phenanthroline (L2), and their Ru(II) complexes [(bpy)2RuL](PF6)2 have been prepared and characterized. Both complexes exhibit metal-to-ligand charge transfer absorption at around 452 nm and emission at around 640 nm in MeCN solution. Electrochemical studies of the complexes reveal a Ru(II)-centered oxidation at around 1.31 V and three ligand-centered reductions. The binding ability of the complexes with Na+ has been investigated by UV/Vis absorption, emission, and electrochemical titrations. Addition of Na+ to MeCN solutions of both complexes results in a progressive enhancement of the emission, a red-shift of the UV/Vis absorption, and a progressive cathodic shift of the Ru(II)-centered E 1/2 couple. The stability constants for the 1:1 stoichiometry adducts of the complexes with Na+ have been obtained from the UV/Vis absorption titrations.  相似文献   

16.
The electronic absorption spectra and photochemical behavior of the complexes of cis-[Ru(bpy)2 · (L)(Cl)]+ (bpy is 2,2'-bipyridyl) with pyridine (L = py) and 4-substituted pyridines [L = methyl-, amino-, and cyanopyridine, and 4,4'-bipyridyl (bipy)]. Photoirradiation of acetonitrile solutions of the complexes results in substitution of ligand L by a solvent molecule. A correlation was revealed between the photolysis quantum yield and the coordination-induced ligand L-to-metal charge transfer.  相似文献   

17.
Three ruthenium(II) polypyridyl complexes [Ru(dmb)2(dadppz)]2+ 1, [Ru(bpy)2(dadppz)]2+ 2 and [Ru(phen)2(dadppz)]2+ 3 were synthesized and characterized by elemental analysis, ES-MS, 1H NMR and 13C NMR. Their DNA-binding behaviors were investigated by absorption titration, fluorescence spectroscopy and viscosity measurements. Cytotoxicity in vitro, apoptosis, cell cycle arrest, cellular uptake and reactive oxygen species assays were performed. The complexes were found to show moderate DNA-binding affinities and high cytotoxicities toward A549, BEL-7402, MG-63 and SKBR-3 cell lines. These complexes can effectively induce apoptosis of BEL-7402. In cell cycle assays, the complexes induced S-phase arrest on BEL-7402 cells and G0/G1-phase arrest on SKBR-3 cells. The DNA-binding experiments showed that the three complexes interact with CT-DNA through an intercalative mode.  相似文献   

18.
Two tripodal ligands H3L1 and H3L2 containing imidazole rings have been prepared by the reaction of 1,10-phenanthroline-5,6-dione with 1,3,5-tris[(4-formylphenoxy)methyl]benzene and 1,3,5-tris[(2-formylphenoxy)methyl]benzene, respectively. Trinuclear Ru(II) complexes [(bpy)6Ru3H3L1?C2](PF6)6 (bpy=2,2??-bipyridine) have been obtained by the condensation of Ru(bpy)2Cl2?·?2H2O with ligands H3L1 and H3L2, respectively. The pH effects on the UV?CVis absorption and emission spectra of both complexes have been studied, and ground- and excited-state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as pH-induced switchable luminescence sensors through protonation and deprotonation of the imidazole groups, with a maximum on?Coff ratio of 6 in buffer solution at room temperature.  相似文献   

19.
Two hetero-tritopic bridging ligands L1 and L2 based on 2,2′-bipyridine and 1,10-phenanthroline moieties, and their corresponding Ru(II) complexes [{Ru(bpy)2}33?L1)](PF6)6 and [{Ru(bpy)2}33?L2)](PF6)6 (bpy = 2,2′-bipyridine), were synthesized. The molecular structures of both complexes were deduced by 1H NMR, ESI-MS, ESI-HRMS, elemental analyses, and IR spectroscopy. Quantum calculations on the free bridging ligands and their complexes are also presented. Both complexes display MLCT absorptions at around 454 nm, and emissions at around 613 nm in CH3CN solution at room temperature and at around 590 nm in EtOH–MeOH glassy matrix at 77 K. Cyclic and differential pulse voltammetry studies of both complexes reveal one reversible Ru(II)-centered oxidation and three reversible ligand-centered reductions, in each case.  相似文献   

20.
Spectral-kinetic luminescence characteristics of the complexes cis-[Ru(bpy)(dppe)X2], cis- [Ru(bpy)2(PPh3)X](BF4) and cis-[Ru(bpy)2X2] [bpy = 2,2'-bipyridyl, dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 is triphenylphosphine, X = NO2 - and CN-] in the ethanol-methanol 4:1 mixtures and adsorbed on the oxide SiO2 or porous polyacrylonitrile polymer surface were studied. Luminescence and luminescence exitation spectra were registered at 77 and 293 K in 230-750 nm range and the luminescence decay time was measured. Introduction of phosphine ligands to the ruthenium(II) bipyridyl complexes inner sphere leads to rise in singlet and triplet state energy at the charge transfer from Ru(II) to 2,2'-bipyridyl in the series [Ru(bpy)2X2] < Ru(bpy)2(PPh3)X](BF4) < [Ru(bpy)(dppe)X2]. The complex adsorption on SiO2 or polyacrylonitrile surface affects noticeably the luminescence spectro-kinetic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号