首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
AUNIFORMLYDIFFERENCESCHEMEOFSINGULARPERTURBATIONPROBLEMFORASEMILINEARORDINARYDIFFERENTIALEQUATIONWITHMIXEDBOUNDARYVALUECONDIT...  相似文献   

2.
AUNIFORMLYCONVERGENTDIFFERENCESCHEMEFORTHESINGULARPERTURBATIONPROBLEMOFAHIGHORDERELLIPTICDIFFERENTIALEQUATION(刘国庆)(苏煜城)AUNIFO...  相似文献   

3.
By using the method in[3],several useful estimations of the derivatives of the solutionof the boundary value problem for a nonlinear ordinary differential equation with a turningpoint are obtained.With the help of the technique in[4],the uniform convergence on thesmall parameterεfor a difference scheme is proved.At the end of this paper,a numericalexample is given.The numerical result coincides with theoretical analysis.  相似文献   

4.
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter ε, to the solution of problem (1.1). Numerical results are finally provided.  相似文献   

5.
We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L~2 norm is proved and numerical examples are presented.  相似文献   

6.
In this paper, we consider a second order ordinary differential equation with a small, positive parameter ε in its highest derivative for periodic boundary values problem and prove that the solution of difference scheme in paper [1] uniformly converges to the solution of its original problem with order one.  相似文献   

7.
1 DifferentialEquationandDifferentiabilityPropertiesoftheSolutionInthispaper,weconsidertheconservativeformandsingularperturbedordinarydifferentialequationwithperiodicboundaryvalueproblem :Lu(x) ≡ε(p(x)u′(x) )′ (q(x)u(x) )′-r(x)u(x) =f(x)  ( 0 <x<1 ) ,( 1 )u( 0 ) ≡u( 1 ) ,lu≡u′( 1 )…  相似文献   

8.
IntroductionThereweresomeresultsofstudyingonboundaryvalueproblemsforfunctionaldifferentialequation[1~6 ]byemployingthetoplolgicaldegreetheoryandsomefixedpointprinciplesinrecentyears.Buttheworktostudyboundaryvalueproblemsfordelaydifferentialequationwithsmallparameterbymeansofthetheoryofsingularperturbationrarelyappeared[7~11].Thereasonforitisthattheworktoconstructtheuppersolutionandlowersolutionforthecaseofdifferentialequationwithdelayisdifficult.Theauthorhasstudiedakindofboundaryvalueproblem…  相似文献   

9.
In some investigations on variational principle for coupled thermoelastic problems, the free energy Φ(eij,θ) ,where the state variables are elastic strain eij and temperature increment θ, is expressed as Φ(eij,θ)=λ/2ekkeij=uek1ek1-γekkθ-c/2 p θ2/T0(0.1) This expression is employed only under the condition of |θ|≤T0(absolute temperature of reference) But the value of temperature increment is great, even greater than T0 in thermal shock. And the material properties (λ ,μ ,ν ,c , etc.) will not remain constant, they vary with θ. The expression of free energy for this condition.is derived in this paper. Equation (0.1) is its special case.Euler’s equations will be nonlinear while this expression of free energy has been introduced into variational theorem. In order to linearise, the time interval of thermal shock is divided into a number of time elements Δtk, (Δtk=tk-tk-1,k=1,2…,n), which are so small that the temperature increment θk within it is very small, too. Thus, the material properties may be defined by temperature field Tk-1=T(x1,x2,x3,tk-1) at instant tk-1 , and the free energy Φk expressed by eg. (0.1) may be employed in element Δtk.Hence the variational theorem will be expressed partly and approximately.  相似文献   

10.
A uniform high order method is presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems (1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O(h~m+1)accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O(h~m+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.  相似文献   

11.
Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.  相似文献   

12.
IntroductionThepurposeofthispaperistodevelopacuratediferencemethodforthefolowinginitialvalueproblem,whichisinsingularperturba...  相似文献   

13.
The numerical solution of a singularly perturbed problem for the semilinear parabolicdifferential equation with parabolic boundary layers is discussed.A nonlinear two-leveldifference scheme is constructed on the special non-uniform grids.The uniform convergenceof this scheme is proved and some numerical examples are given.  相似文献   

14.
In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the regular perturbation method, the outer solution of the original problem is obtained. Secondly, by using the stretched variable and the expansion theory of power series the initial layer of the solution is constructed. And then, by using the theory of differential inequalities, the asymptotic behavior of the solution for the initial boundary value problems is studied. Finally, using some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.  相似文献   

15.
IntroductionInthispaper,westudiedakindofboundaryvalueproblems (BVPs)forsemi_linearretardeddifferentialequationwithnonlinearboundarycondition :    εx″(t) =f(t,x(t) ,x(t-ε) ,ε) ,  t∈(0 ,1 ) ,(1 )    x(t) =φ(t,ε) , t∈[-ε0 ,0 ] ,h(x(1 ) ,x′(1 ) ,ε) =A(ε) ,(2 )whereε>0isasmallparameterandε0 isasufficientlysmallpositiveconstant.ThereweremanyresultsofstudyingonsingularlyperturbedboundaryvalueproblemforretardeddifferentialequationinRefs.[1~5] .Butthosestudiespossessedanesse…  相似文献   

16.
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.  相似文献   

17.
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.  相似文献   

18.
In this paper, we discuss the singular perturbation problem of the parabolic partial differential equation. As usual, we must reduce the mesh size in the neighbourhood of the boundary layer so that typical feature of the boundary layer will not be lost. Then we need very large operational quantity when mesh sizes are getting too small. Now we propose the boundary layer scheme, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical examples show that the accuracy can be satisfied with moderate step size.  相似文献   

19.
In this paper, using nonumiform mesh and exponentially fitted difference method,a uniformly convergent difference scheme .for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter ε is given, and error estimate and numerical result are also given.  相似文献   

20.
In this paper, we consider a singularly perturbed problem of a kind of quasilinear hyperbolic-parabolic equations, subject to initial-boundary value conditions with moving boundary: When certain assumptions are satisfied and ε is sufficiently small, the solution of this problem has a generalized asymptotic expansion (in the Van der Corput sense), which takes the sufficiently smooth solution of the reduced problem as the first term, and is uniformly valid in domain Q where the sufficiently smooth solution exists. The layer exists in the neighborhood of t=0. This paper is the development of references [3–5]. The Project supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号