首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic reduction of carbon dioxide into chemical fuels is a promising route to generate renewable energy and curtail the greenhouse effect. Therefore, various photocatalysts have been intensively studied for this purpose. Among them, g-C3N4, a 2D metal-free semiconductor, has been a promising photocatalyst because of its unique properties, such as high chemical stability, suitable electronic structure, and facile preparation. However, pristine g-C3N4 suffers from low solar energy conversion efficiency, owing to its small specific surface area and extensive charge recombination. Therefore, designing g-C3N4 (CN) nanosheets with a large specific surface area is an effective strategy for enhancing the CO2 reduction performance. Unfortunately, the performance of CN nanosheets remains moderate due to the aforementioned charge recombination. To counter this issue, loading a cocatalyst (especially a two-dimensional (2D) one) can enable effective electron migration and suppress electron-hole recombination during photo-irradiation. Herein, CN nanosheets with a large specific surface area (97 m2·g-1) were synthesized by a two-step calcination method, using urea as the precursor. Following this, a 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst was obtained by loading a FeNi layered double hydroxide (FeNi-LDH) cocatalyst onto CN nanosheets by a simple hydrothermal method. It was found that the production rate of methanol from photocatalytic CO2 reduction over the FeNi-LDH/g-C3N4 composite is significantly higher than that of pristine CN. Following a series of characterization and analysis, it was demonstrated that the FeNi-LDH/g-C3N4 composite photocatalyst exhibited enhanced photo-absorption, which was ascribed to the excellent light absorption ability of FeNi-LDH. The CO2 adsorption capacity of the FeNi-LDH/g-C3N4 hybrid photocatalyst improved, owing to the large specific surface area and alkaline nature of FeNi-LDH. More importantly, the introduction of FeNi-LDH on the CN nanosheet surface led to the formation of a 2D/2D heterojunction with a large contact area at the interface, which could promote the interfacial separation of charge carriers and effectively inhibit the recombination of the photogenerated electrons and holes. This subsequently resulted in the enhancement of the CO2 photo-reduction activity. In addition, by altering the loading amount of FeNi-LDH for photocatalytic performance evaluation, it was found that the optimal loading amount was 4% (w, mass fraction), with a methanol production rate of 1.64 μmol·h-1·g-1 (approximately 6 times that of pure CN). This study provides an effective strategy to improve the photocatalytic CO2 reduction activity of g-C3N4 by employing 2D layered double hydroxide as the cocatalyst. It also proposes a protocol for the successful design of 2D/2D photocatalysts for solar energy conversion.   相似文献   

2.
Developing photocatalyst with high activity,superior stability and prominent selectivity for CO2 conversion is of great importance for the target of carbon neutralization.Herein,3 D dahlia-like NiAl-LDH/CdS heterosystem is developed through in-situ decoration of exfoliated CdS nanosheets on the scaffold of NiAl-LDH and the on-spot self-assembly.The formation of a hierarchical architecture collaborating with well-defined 2 D/2 D interfacial interaction is constructed by optimizing the ...  相似文献   

3.
通过高温煅烧和油浴的方法构筑二维/三维(2D/3D) ZnIn2S4/TiO2异质结, 应用于光催化降解罗丹明B (RhB)和四环素(TC), 来研究异质结的构筑对TiO2可见光响应范围和光生载流子对分离效率的影响. 结果表明, TiO2维持了MOFs的形貌, 显示窄的可见光响应范围和高的光生电荷复合率, 与ZnIn2S4纳米片复合后, TiO2的比表面积增大, 光催化活性位点增多. 带隙宽度也由TiO2的3.23 eV减小到ZnIn2S4/TiO2-II的2.52 eV, 从而获得了更宽的可见光响应范围. 能带结构表明ZnIn2S4/TiO2是type II型异质结, 提高了光生载流子对的分离与转移效率. 在可见光照射下, ZnIn2S4/TiO2-II显示了最高的RhB光催化降解效率(93%), 分别是TiO2和ZnIn2S4的18和2倍. 同时, ZnIn2S4/TiO2-II也显示出比TiO2和ZnIn2S4更高的TC降解效率(90%). 循环实验表明ZnIn2S4/TiO2-II能保持良好的稳定性, 经5次循环实验后仍能降解83%的RhB. 研究表明基于MOFs衍生的TiO2构筑2D/3D ZnIn2S4/TiO2异质结是提高TiO2光催化性能的一条有效途径.  相似文献   

4.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

5.
6.
[reaction: see text] A general and in situ D2 gas generation method using 10% Pd/C-catalyzed H2-D2 exchange reaction in a H2-D2O system has been developed. H2 gas sealed in a reaction flask was efficiently converted into nearly pure D2 gas, which can be used for the reductive deuteration of substrates possessing reducible functionalities within the molecule.  相似文献   

7.
Multidimensional nano‐heterostructures (NHSs) that have unique dimensionality‐dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well‐defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.  相似文献   

8.
张彬  胡晓云  刘恩周  樊君 《催化学报》2021,42(9):1519-1529
近年来,能源短缺和环境污染严重威胁人类的可持续发展.光催化技术具有绿色环保、成本低等优势,被认为是解决上述问题的最佳途径之一,其实用化的核心是开发高效可见光催化材料.石墨相氮化碳(g-C3N4)因其物理化学性质稳定、无毒、廉价及能带适宜等特点,广泛应用于光催化领域.然而,光生载流子易复合、比表面积小等问题不利于其实际应...  相似文献   

9.
Three conceptually different mathematical methods are presented for accurate mass spectrometric determination of H2O/HOD/D2O and H2Se/HDSe/D2Se concentrations from mixtures. These are alternating least-squares, weighted two-band target entropy minimization, and a statistical mass balance model. The otherwise nonmeasurable mass spectra of partially deuterated isotopologues (HOD and HDSe) are mathematically constructed. Any recorded isotopologue mixture mass spectra are then deconvoluted by least-squares into their components. This approach is used to study the H2O/D2O exchange reaction, and is externally validated gravimetrically. The H2O/D2O exchange equilibrium constant is also measured from the deconvoluted 70 eV electron impact GC/MS data (K = 3.85 +/- 0.03).  相似文献   

10.
Photocatalytic conversion of CO2 into a special chemical fuel with high yield and selectivity is still a major challenge.Herein,a 3D hierarchical NiAl-LDH/Ti3C2...  相似文献   

11.
《中国化学快报》2021,32(10):3128-3132
Low-efficiency charge transfer is a critical factor to limit the photocatalytic H2 evolution activity of semiconductor photocatalysts. The interface design is a promising approach to achieve high charge-transfer efficiency for photocatalysts. Herein, a new 2D/2D atomic double-layer WS2/Nb2O5 shell/core photocatalyst (DLWS/Nb2O5) is designed. The atom-resolved HAADF-STEM results unravel the presence of an unusual 2D/2D shell/core interface in DLWS/Nb2O5. Taking advantage of the advanced femtosecond-resolved ultrafast TAS spectra, the average lifetime of charge carriers for DLWS/Nb2O5 (180.97 ps) is considerably shortened as compared to that of Nb2O5 (230.50 ps), strongly indicating that the 2D/2D shell/core interface enables DLWS/Nb2O5 to achieve ultrafast charge transfer from Nb2O5 to atomic double-layer WS2, thus yielding a high photocatalytic H2 evolution rate of 237.6 μmol/h, up to 10.8 times higher than that of pure Nb2O5 nanosheet. This study will open a new window for the development of high-efficient photocatalytic systems through the interface design.  相似文献   

12.
We investigate the interface between carbon nitride (C3N4) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3N4/P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers’ separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers’ migration as a function of the P-ene thickness.  相似文献   

13.
Sr+ ions were confined in a r.f. quadrupole trap for times of the order of 30 min. The metastable 4D states were populated via laser excitation of the 5P states. The weak quadrupole transition rate into the 5S 1/2 ground state at 674 and 687 nm was deduced from observation of the exponential decay. At background pressures above 10?7 mbar the radiative decay is dominated by collisional quenching. Extrapolation of the observed decay rate to zero background pressure yields the radiative lifetimes. At pressures around 10?6 mbar fine structure mixing collisions between the 4D states have been observed, which lead to corrections of the extrapolated lifetimes. As the final result we obtain 395±38 ms for 4D 3/2 and 345±33 ms for 4D 5/2. These results are somewhat higher than theoretical predictions.  相似文献   

14.
The lifetime of the metastable 3D3/2 and 3D5/2 states of Ca+ ions is determined in a r.f. ion trap by laser excitation of this levels and subsequent time delayed probing of the state population by a second laser. In a buffer gas atmosphere of about 10–5–10–6 mbar of He we observe quenching to the ground state and strong finestructure mixing of the two D-states. This mixing allowes only the determination of the combined lifetime. Our result of (3D)=1.24(39) s is in good agreement with theoretical calculations.  相似文献   

15.
Copolymers containing N-vinylcarbazole (V) and butyl methacrylate (B) units of different compositions were synthesized and their compositions were determined from quantitative 13C{1H} NMR spectroscopy. The reactivity ratios of the comonomers were estimated using the Kelen-Tudos and non-linear error in variable methods. The complete spectral assignment in terms of compositional and configurational sequences of the overlapping 1H and 13C{1H} spectra of the copolymers were done with the help of distortionless enhancement by polarization transfer, 2D heteronuclear single quantum correlation and total correlated spectroscopy experiments.  相似文献   

16.
《中国化学快报》2023,34(4):107682
The elaborate regulation of heterostructure interface to accelerate the interfacial charge separation is one of practicable approaches to improve the photocatalytic CO2 reduction performance of halide perovskite (HP) materials. Herein, we report an in-situ growth strategy for the construction of 2D CsPbBr3 based heterostructure with perovskite oxide (SrTiO3) nanosheet as substrate (CsPbBr3/SrTiO3). Lattice matching and matchable energy band structures between CsPbBr3 and SrTiO3 endow CsPbBr3/SrTiO3 heterostructure with an efficient interfacial charge separation. Moreover, the interfacial charge transfer rate can be further accelerated by etching SrTiO3 with NH4F to form flat surface capped with Ti?O bonds. The resultant 2D/2D T-SrTiO3/CsPbBr3 heterostructure exhibits an impressive photocatalytic activity for CO2 conversion with a CO yield of 120.2 ± 4.9 μmol g?1 h?1 at the light intensity of 100 mW/cm2 and water as electron source, which is about 10 and 7 times higher than those of the pristine SrTiO3 and CsPbBr3 nanosheets, surpassing the reported halide perovskite-based photocatalysts under the same conditions.  相似文献   

17.
The linear polarisation of fluorescence radiation following the photoionisation in the 4d 5/2 and 4d 3/2 subshells of Cd and in the 3d 3/2 subshell of Zn has been measured in the energy range of primary photons from threshold up to about 40 eV. The experimental values of the linear polarisation found for the fluorescence radiation of Cd+(4d ?1) ions are in essential agreement with theoretical results obtained by an RRPA calculation (Johnson et al.). For the case of Zn+(3d ?1) on the other hand, no theoretical data are presently available. Using the experimental values of linear polarisation of fluorescence radiation the values of the alignment tensorA 20 have been evaluated for the ions Cd+(4d ?1 2 D 5/2,2 D 3/2) and Zn+(3d ?1 2 D 3/2).  相似文献   

18.
S型异质结不但可以提高载流子的分离效率,还可以维持较强的氧化还原能力。因此,构建S型异质是提高光催化二氧化碳还原反应的有效途径。本研究通过静电自组装法构建了具有近红外光响应(> 780 nm)的二维BiOBr0.5Cl0.5纳米片和一维WO3纳米棒S型异质结光催化剂,并用于高效还原二氧化碳。能带位置和界面电子相互作用的综合分析表明:在光催化二氧化碳还原反应过程中,BiOBr0.5Cl0.5/WO3遵循S型电子转移路径;不仅提高了载流子的高效分离,还维持了两相(BiOBr0.5Cl0.5和WO3)较高的氧化还原能力。此外,二维纳米片/一维纳米棒的结构使得半导体之间具备良好的界面接触,有利于载流子的分离,且暴露更多的活性位点,最终提高催化效率。结果显示,BiOBr0.5Cl0.5/WO3异质结催化剂表现出较高的CO2还原能力和CO选择性,CO的产率高达16.68 μmol∙g-1∙h-1,分别是BiOBr0.5Cl0.5的1.7倍和WO3的9.8倍。本工作为构建S型二维/一维异质结光催化剂高效还原二氧化碳提供了新的思路。  相似文献   

19.
近年来,等离子体半导体光催化剂因其具有从可见光到近红外光的光响应而引起了人们极大的研究兴趣.含有丰富氧空位的非化学计量的氧化钼(MoO3-x)具有中心位于700 nm和尾部吸收拓展至2000 nm强的局域表面等离子体共振(LSPR)效应,因此,MoO3-x或将成为实现全光谱响应光催化制氢技术最有吸引力的候选材料之一.然而,单一MoO3-x中电荷载流子的复合快速.具有II型、Z型或S型异质结构的MoO3-x基复合光催化剂的构建被证明是同时实现拓展光吸收和分离光生载流子改善光催化析氢性能的有效策略.与传统的Ⅱ型异质结构相比,Z型或S型可在较高还原电位上进行水分解反应,又可以实现光生载流子的有效分离.相比于Z型,S型由于内部电场导致的半导体的能带玩去可以进一步缩短电子与空穴之间的迁移距离,从而导致光诱导载流子的更快分离.基于此,本文选择了与MoO3-x能带匹配的CdS半导体催化剂,通过简单的共沉淀法在具有LSPR效应的二维(2D)MoO3-x椭圆纳米片上生长零维(0D)CdS纳米粒子,制备了LSPR增强的0D/2D CdS/MoO3-xS型异质结.由于MoO3-x的引入,0D/2D CdS/MoO3-x复合材料展现出了一个因LSPR效应而具有的从600到1400 nm的尾部吸收,并且这种尾部吸收强度随着复合材料中MoO3-x含量的增加而增加.在可见光光催化反应中,CdS/MoO3-x复合材料的产氢速率为7.44 mmol·g^-1·h^-1,为单一CdS的10.3倍.当采用不同波段的单色光作为激发光源,在420,450和550 nm单色光的照射下,CdS/MoO3-x复合材料的产氢效率为15.7,10.9和193.4 mmol·g^-1,分别比CdS高6.8,5.0和3倍.当激发波长拓展至650 nm时,CdS/MoO3-x复合材料的产氢效率为6.83 mmol·g^-1,而CdS则不具有产氢活性,侧面体现了MoO3-x的LSPR效应在提升光解水产氢活性方向的有效作用.我们利用肖特基和固体紫外测试确定了CdS和MoO3-x的能带结构,并通过第一原理密度泛函理论模拟计算了CdS和MoO3-x的功函数,分别为4.07和7.56 eV,当这两个半导体接触时,MoO3-x的费米能级比CdS的更负,电子将从CdS迁移到MoO3-x,因此CdS和MoO3-x的能带将分别向上和向下弯曲,直到其费米能级达到平衡.这种向上和向下的带弯曲是S型结构的特征之一.XPS分析也证实在带正电荷的CdS和带负电荷的MoO3-x之间会产生内部电场,这也符合S型结构.此外,还利用电子自旋共振(ESR)进一步研究了CdS,MoO3-x和CdS/MoO3-x在光照下自由基的产生情况,CdS/MoO3-x产生的DMPO-·O2?和DMPO-·OH信号强度均强于CdS和MoO3-x,证明CdS/MoO3-x能产生更多的·O2?和·OH自由基.ESR结果还表明,在CdS/MoO3-x复合材料中光诱导电子和空穴仍然分别停留在CdS的导带和MoO3-x的价带中,CdS/MoO3-x复合材料的光诱导电荷分离机制将遵循S型机制,而不是传统的II型异质结.在光照下,内部电场和弯曲能带促使积聚在MoO3-x导带上的电子与CdS的空穴结合,在CdS的导带上留下具有较强氧化还原能力的电子参与光催化水还原反应,实现高效的光催化产氢.  相似文献   

20.
The threat and global concern of energy crises have significantly increased over the last two decades. Because solar light and water are abundant on earth, photocatalytic hydrogen evolution through water splitting has been considered as a promising route to produce green energy. Therefore, semiconductor photocatalysts play a key role in transforming sunlight and water to hydrogen energy. To date, various photocatalysts have been studied. Among them, TiO2 has been extensively investigated because of its non-toxicity, high chemical stability, controllable morphology, and high photocatalytic activity. In particular, 1D TiO2 nanofibers (NFs) have attracted increasing attention as effective photocatalysts because of their unique 1D electron transfer pathway, high adsorption capacity, and high photoinduced electron–hole pair transfer capability. However, TiO2 NFs are considered as an inefficient photocatalyst for the hydrogen evolution reaction (HER) because of their disadvantages such as a large band gap (~3.2 eV) and fast recombination of photoinduced electron–hole pairs. Therefore, the development of a high-performance TiO2 NF photocatalyst is required for efficient solar light conversion. In recent years, several strategies have been explored to improve the photocatalytic activity of TiO2 NFs, including coupling with narrow-bandgap semiconductors (such as ZnIn2S4). Recently, microwave (MW)-assisted synthesis has been considered as an important strategy for the preparation of photocatalyst semiconductors because of its low cost, environment-friendliness, simplicity, and high reaction rate. Herein, to overcome the above-mentioned limiting properties of TiO2 NFs, we report a 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction synthesized through a microwave (MW)-assisted process. Herein, the 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction was constructed rapidly by using in situ 2D ZnIn2S4nanosheets decorated on 1D TiO2 NFs. The loading of ZnIn2S4 nanoplates on the TiO2 NFs could be easily controlled by adjusting the molar ratios of ZnIn2S4 precursors to TiO2 NFs. The photocatalytic activity of the as-prepared samples for water splitting under simulated solar light irradiation was assessed. The experimental results showed that the photocatalytic performance of the ZnIn2S4/TiO2 composites was significantly improved, and the obtained ZnIn2S4/TiO2 composites showed increased optical absorption. Under optimal conditions, the highest HER rate of the ZT-0.5 (molar ratio of ZnIn2S4/TiO2= 0.5) sample was 8774 μmol·g-1·h-1, which is considerably higher than those of pure TiO2 NFs (3312 μmol·g-1·h-1) and ZnIn2S4nanoplates (3114 μmol·g-1·h-1) by factors of 2.7 and 2.8, respectively. Based on the experimental data and Mott-Schottky analysis, a possible mechanism for the formation of the S-scheme heterojunction between ZnIn2S4 and TiO2 was proposed to interpret the enhanced HER activity of the ZnIn2S4/TiO2heterojunctionphotocatalysts.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号