共查询到16条相似文献,搜索用时 0 毫秒
1.
为解决噪声干扰、数据丢失情况下迭代最近点算法的鲁棒性差、配准精度低等问题,提出一种基于邻域特征点提取和匹配的点云配准方法.首先定义一个由点的k邻域曲率、点与邻近点的法向量内积均值以及邻近点与邻域拟合平面的欧氏距离方差等三部分组成的邻域特征参数,结合在移动最小二乘表面构造的曲率特征参数对点云进行两次特征点提取;其次依据直方图特征定义三个匹配条件,并用双重约束获得正确的匹配点对;最后在配准阶段,采用双向构建k维树的迭代最近点算法实现精确配准.实验结果表明,该算法的配准精度较迭代最近点算法提高了90%以上,并且能够在噪声环境下有效地完成缺失点云的配准,在鲁棒性和精确配准方面有明显优势. 相似文献
2.
3.
4.
系统探讨基于平面特征约束的地面LiDAR点云的高精度融合问题,引入单位四元数作为空间旋转变换的描述算子,给出了三维空间中平面特征的四参数表达方法,在确保数学表达形式唯一的基础上实现对基于平面特征约束的空间相似变换模型的构建。以配准后同名平面特征的参数对等作为约束条件,基于最小二乘准则构建了三维空间相似变换的目标函数,并通过函数的极值化分析实现了平面特征约束下相邻测站LiDAR点云配准参数的迭代求解。最后,分别通过两组实测LiDAR点云数据对算法的正确性与有效性进行验证。结果表明:在求解空间相似变换参数的过程中,借助平面特征的四参数表达法,通过参数对等的条件约束来判断配准后同名特征的一致性,同时满足了同名平面特征之间的法向一致与距离为零两个约束条件;四元数的引入使空间相似变换模型的表达形式更加简洁,配准过程中的附加约束条件更少,在实验方案中,给定任意的未知参数初值,所提算法均能够运行并得到正确结果。 相似文献
5.
针对点云配准过程中点云数据量大、配准时间长、配准精度低的问题,提出了一种基于内部形态描述子(intrinsic shape signatures, ISS)和三维形状上下文描述子(3D shape context, 3DSC)的点云配准算法。该方法首先使用体素网格滤波器对点云进行下采样,接着利用ISS算法提取特征点,并通过3DSC进行描述,然后通过改进的随机采样一致性(randon sample consensus, RANSAC)算法进行粗匹配,最后用改进的迭代最近点算法(iterative closest point, ICP)对点云进行精匹配。试验结果表明,与基于ISS+3DSC的三维正态分布变换(normal distribution transformation, NDT)算法和基于采样一致性初始配准(sample consensus initial aligment, SAC-IA)的ICP算法相比,本文算法的配准精度及效率更高,且对于数据量大的点云也有较好的匹配效果。 相似文献
6.
7.
颅骨配准是颅面复原过程中的重要步骤之一,颅骨配准的精度直接影响着颅面复原结果的好坏。为了提高颅骨点云模型的配准精度和收敛速度,提出一种基于分层优化策略的颅骨点云配准算法,将配准过程分为粗配准和细配准两个过程,分别采用不同的优化策略进行优化。首先基于点的邻域提取几何特征,从而得到由平均曲率、高斯曲率、法向量夹角和主曲率构成的特征向量;进一步通过距离函数计算特征相似性来建立匹配点对,并采用k-means算法剔除误匹配点对;然后使用四元数法计算颅骨点云间的刚体变换关系,实现颅骨粗配准;最后通过引入k-维(k-d)树和加入几何特征约束对迭代最近点(ICP)算法进行改进,使用改进的ICP算法实现颅骨的精确配准。实验结果表明:粗配准过程采用k-means算法剔除误匹配点对的优化策略和细配准过程加入k-d树与几何特征约束的优化策略都是有效的。与ICP算法相比,本文算法的匹配率和配准精度分别提高了约17%和51%,算法耗时减少了约31%。与其他经典配准算法和改进的ICP算法相比,本文算法的配准效率是最优的。为了验证本文算法的普适性,还采用兵马俑碎片数据进行验证,本文算法也取得了较好的效果和最优的性能。... 相似文献
8.
9.
在计算机辅助文物虚拟复原过程中,针对现有复原方法匹配精度低、速度慢等问题,提出一种新的基于断裂面特征点匹配的文物碎片重组方法。利用改进的内部形状签名法提取碎片断裂面潜在特征点;计算特征点邻域几何特征的协方差矩阵,从而构建特征描述符;采用对数欧氏黎曼度量方法作为相似性度量准则,通过双向最近邻法获得初始点对集合,再利用典型相关分析法消除误匹配对得到最优匹配集;使用最小二乘法估算刚体变换矩阵将碎片粗对齐,再采用迭代最近点算法实现精确对齐,最终实现碎片重组。实验结果表明,本文算法相对传统算法特征点数量少,描述符简单,且稳健性强,有效提高了碎片重组的效率和准确性。 相似文献
10.
11.
12.
13.
基于增强型点对特征的三维目标识别方法 总被引:1,自引:0,他引:1
针对基于原始点对特征的三维目标识别算法中存在的内存浪费、效率不高的问题,提出了一种基于增强型点对特征的三维目标识别算法。通过在原始点对特征的第4个分量上乘以一个符号函数,得到了一种区分性更强的点对特征,消除了原始点对特征存在的二义性。考虑到待识别目标三维模型存在的自遮挡,利用点对之间的视点可见性约束,剔除了目标三维模型哈希表中存在的大量冗余点对,节省了内存开销并提高了三维目标识别算法的识别准确率和效率。在开放数据集和实际采集的数据集上的实验结果表明,与基于原始点对特征的算法相比,所提三维目标识别算法在识别准确率和效率上都有一定程度的提升。 相似文献
14.
15.
一种改进的视觉传感器与激光测距雷达特征匹配点提取算法 总被引:2,自引:0,他引:2
激光测距雷达与视觉传感器的配准是视觉图像与激光距离信息融合的前提。激光测距雷达与视觉传感器的配准可分为点匹配与平面匹配。由于混合像素和非结构空间特征激光点丢失现象,使得基于点匹配的视觉传感器与激光测距雷达配准算法精度难以提高。通过对混合像素和非结构空间特征激光点丢失问题的分析,提出了一种结合平面建模思想,利用假想激光光束与平面模型相交提取匹配特征点的方法。验证了实验结果并进行了算法精度比较。实验结果表明,这种改进的特征匹配点提取算法解决了特征点缺失,并且提高了点匹配的精度,使匹配性能大大地改善。 相似文献
16.
针对激光位姿敏感器获得的原始点云有噪声和直接参与解算消耗星上计算资源过大问题,给出一种适用于空间非合作目标位姿测量的点云滤波和特征提取算法。应用仿真的方法分别验证了算法滤除空间随机噪声和点云降采样的有效性,验证了特征点对目标位姿变化和高斯测量噪声的鲁棒性。在非合作目标绕飞、抵近、捕获全物理试验平台上,以扫描激光位姿敏感器获得的原始点云数据为输入,验证了算法在实际空间目标位姿测量中的性能。试验结果表明,该算法实现了原始点云93.1%的降采样,节省了92.9%的位姿解算时间,可有效提升星上数据处理的效率和姿态解算的实时性。 相似文献