首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
韩海年  魏志义  赵刚 《物理》2012,41(4):249-255
光学频率梳技术用于高分辨率天文光谱仪的波长定标可以大大提高视向速度测量精度,从而为搜寻类地行星、确定宇宙膨胀速度和测量基本物理常数等重大前沿科学问题提供有利的工具.文章结合视向速度测量技术与天文光学频率梳波长定标技术的最新进展,介绍了天文光学频率梳原理及技术,多普勒光谱位移探测天体的原理,以及天文光梳定标高分辨率天文光谱仪未来发展的趋势和展望.  相似文献   

2.
激光频率梳定标的虚拟成像相位阵列光谱仪有潜力同时实现超高光谱分辨率与波长定标精度,对于天文光谱探测有重要意义。然而,现有的研究工作中,虚拟成像相位阵列光谱仪采用常规的双通道光纤输入模式,在受环境干扰时,两个通道的同步性较差,相对漂移严重,从而降低了光谱仪的重复性定标精度。为解决该问题,提出一种以光波导作为输入器件的双通道虚拟成像相位阵列光谱仪,利用波导通道之间相对稳定的特性,实现更高水平的同步定标精度。通过对不同环境下光谱仪的稳定性进行研究得出,在相似的测试条件下,波导输入的虚拟成像相位阵列光谱仪的重复性定标精度明显优于光纤输入时的定标表现。  相似文献   

3.
为了对PGP成像光谱仪所获得的光谱数据进行定量化分析,需对PGP成像光谱仪进行光谱定标,以获得各光谱通道的中心波长、光谱分辨率及成像光谱仪的光谱弯曲等光谱特性信息。采用单色准直光法设计了一套全视场自动化的光谱定标系统,系统中引入球面镜为待测的成像光谱仪光谱定标提供准直光,通过可自动控制的折转镜改变定标入射光线的入射角,以此实现待测成像光谱仪空间维不同视场的自动化光谱定标。运用该定标系统对PGP成像光谱仪进行光谱定标实验,得到该成像光谱仪的光谱性能参数,并结合定标系统的结构特点,对实验的结果进行了精度分析。实验分析结果表明该系统对PGP成像光谱仪的中心波长定标精度达到0.1 nm,光谱分辨率定标精度达到1.3%。该研究设计的全视场自动化光谱定标系统具有结构新颖紧凑、通用性较强、光谱定标精度较高等特点,且由于自动化的控制,避免了由于人为参与定标过程所带来的额外误差。该系统可用于实现PGP成像光谱仪及其他同类型成像光谱仪的光谱定标。  相似文献   

4.
《光学技术》2013,(2):180-183
采用一种新的波长算法,通过获取光谱峰的位置信息,对相邻像元间的波长进行细分,将线阵CCD微型光谱仪波长的测量分辨率提高到了1pm。实验测量结果表明:测量光纤布喇格光栅(FBG)的波长稳定性优于1pm;测量光纤外腔式Fabry-Perot干涉仪(EFPI)的波长稳定性为5pm;计算速度比采用插值算法更快,有效地提高了波长测量的分辨率和采样频率,可以实现光纤传感信号的高速高精度解调。  相似文献   

5.
为了提高中阶梯光栅光谱仪光谱定标的效率和精度,基于谱图还原算法,提出了利用汞灯多条特征谱线联合定标的思想,设计了中阶梯光栅光谱仪的在线定标算法。以汞灯为定标光源进行光谱定标实验,结果表明该算法在谱图偏差不超过限定范围时可以自动修正谱图还原模型,选择的定标波长越多、分布越均匀,定标精度越高。对于250~600nm波段内的中阶梯光栅光谱仪,选择5个以上的定标波长可以使定标精度达到仪器理论分辨率0.01nm。该方法实现了中阶梯光栅光谱仪的自动化光谱定标,使光谱仪在保证高光谱分辨率的前提下更具实用性,具有工程应用价值。  相似文献   

6.
基于大气吸收带的超光谱成像仪光谱定标技术研究   总被引:1,自引:0,他引:1  
超光谱成像仪是谱像合一的新型光学遥感仪器,其光谱定标的主要任务就是确定超光谱成像仪各通道中心波长和光谱带宽.利用超光谱成像仪光谱采样间隔和大气吸收带中明显的吸收峰对超光谱成像仪进行光谱定标,并通过与定标好的光纤光谱仪结果进行比对,结果显示利用该方法对超光谱成像仪进行光谱定标的定标精度可达1 nm.该方法用于棱镜色散型超...  相似文献   

7.
介绍了应用于我国兴隆观测站2.16m望远镜高分辨率光谱仪的天文光学频率梳。采用掺镱光纤激光频率梳作为源光梳,通过模式滤波使模式间隔达到25GHz,与天文光谱仪的分辨率相匹配。光谱展宽和平滑后,光谱覆盖可见光范围达到270nm以上,光谱平滑度可长期保持在1dB范围内,边模抑制比达到42dB。该天文光学频率梳的视向速度理论定标精度可达cm/s量级,使寻找系外类地行星乃至直接测量宇宙膨胀速度成为可能。  相似文献   

8.
干涉型光谱仪获取光谱的干涉数据信息,数据处理过程中将干涉信息进行一系列光谱复原,最终得到光谱信息数据。光谱定标处理是干涉型光谱仪光谱反演的重要环节,直接决定了光谱信息的可用性和准确度。介绍了干涉型光谱仪光谱定标的基本思路,并在此基础上提出了一种基于总光程差精确解算的光谱定标方法。由于干涉型光谱仪总光程差难以精确测量,而总光程差解算是光谱定标的核心和关键,基于此情况,提出了遍历总光程差,分析光谱漂移,最终确定干涉型光谱仪总光程差的总体思路。定标处理中将所有总光程差可能值带入光谱复原流程,进行光谱复原与分析,最终得到光谱漂移最小的总光程差,即为总光程差解算值。该方法可以精确解算干涉型光谱仪的总光程差,进而对干涉型光谱仪进行高精度光谱定标。同时介绍了详细、完整的光谱定标流程,最终得到干涉型光谱仪各个波段的中心波长值、波数分辨率等。最后设计了典型的干涉型光谱仪主要参数,并生成了该光谱仪的模拟干涉数据,利用该方法对模拟数据进行光谱定标,并对光谱定标结果进行了精度分析和验证,证明该方法波数分辨率定标精度优于0.000 25 cm-1。  相似文献   

9.
新型超分辨干涉型光谱仪光谱定标研究   总被引:2,自引:2,他引:0  
施海亮  方勇华  吴军  熊伟 《光学学报》2012,32(5):528002-277
针对综合光栅衍射与空间干涉与一体的新型空间外差光谱(SHS)技术开展了光谱定标技术研究。从SHS干涉机理入手,列举了SHS与传统超光谱仪器光谱定标的差异,开展了仪器线性函数、光谱分辨率和光谱范围等光谱特性数据的定标原理研究,设计可调谐激光积分球光谱定标法,并且针对超光谱数据特点探讨了谱峰定位等数据处理算法。利用上述光谱定标方法对CO2空间外差光谱仪样机开展了光谱定标实验,并利用镁元素灯进行了定标精度验证,结果表明该光谱定标方法能够满足SHS光谱定标要求,样机实测光谱定标数据与理论设计值吻合。  相似文献   

10.
为了标定扫描式棱镜太阳光谱仪的棱镜不同转动角度对应的中心波长和光谱带宽,利用了一种棱镜扫描方法对太阳光谱仪的光谱响应函数进行测量。该方法使用固定的单色光波长,控制棱镜转动实现单色光的像在探测器位置扫描,并通过坐标映射得到响应位置的光谱响应函数。文中根据光谱响应函数的定义,推导出棱镜扫描法与单色仪波长扫描方法波长定标原理上的等效性。之后分别以532 nm固体激光器和632.8 nm氦氖激光器为光源,使用棱镜扫描法测量太阳光谱仪对应波长位置的光谱响应函数,并以单色仪波长扫描法实验作为对比。实验结果表明,对于扫描式棱镜太阳光谱仪,棱镜扫描法测量的中心波长分别为531.86和632.67 nm,其准确度优于单色仪波长扫描法测得的531.39和631.97 nm。由于不受单色仪性能的限制,前者测量的光谱带宽值也优于后者。最后以汞灯为光源使用棱镜扫描法对太阳光谱仪进行了光谱定标实验,实现了特征光谱定标法结合棱镜扫描法对中心波长及光谱带宽的标定。该方法同样可以应用于扫描式光栅光谱仪以及单色仪的光谱定标。  相似文献   

11.
为了满足原子发射光谱仪在紫外至近红外宽谱段范围内的高光谱分辨率快速检测需求,采用精密角位移平台直接驱动光栅,配合面阵探测器,实现高精度光谱分段快速扫描探测。但在扫描过程中,探测器像元波长增量与光栅转角呈非线性关系,且不同像元的波长增量不同,这对该光谱仪波长定标造成障碍。为校正光栅色散的非线性,基于光栅方程精确计算光栅转角与探测器首尾两端像元波长的映射关系,针对同一光栅转角,探测器其余像元波长利用首尾像元波长按照局部线性色散规律计算得到,从而完成全谱段光谱定标。依据定标所得转角与探测波段对应关系依次驱动光栅转动,实现宽谱段范围内的分段高精度光谱快速扫描探测。利用汞灯光源对该定标方法的波长检测精度进行检验,在200~800 nm的宽谱段范围内,波长准确度优于0.018 nm,波长重复性优于0.001 nm。  相似文献   

12.
为了对大气环境红外甚高光谱分辨率探测仪进行全谱段高精度光谱定标,通过分析干涉型光谱仪的工作原理,对光谱漂移因子进行理论推导,发现通过有限光谱位置校正能实现全谱段光谱定标。采用了以波长计为基准,通过连续可调谐激光作为测试光源的光谱定标方法,并以高精度气体池系统进行交叉定标来验证定标精度。试验结果表明,通过测量光谱漂移因子来进行光谱定标的测试精度优于0.004 cm?1,满足高精度光谱仪定标需求,漂移因子能够应用于干涉型光谱仪光谱定标。  相似文献   

13.
介绍了一种基于谱线匹配技术的星上光谱定标方法,该定标方法选取大气吸收线作为匹配谱线,采用相关系数法作为匹配结果判定条件标进行光谱定标。为模拟星上定标过程,将谱线匹配技术应用于振动试验后的成像光谱仪,振动试验可以模拟成像光谱仪在升空过程中受到的振动。星上光谱定标包括成像光谱仪分辨率的确定、面阵探测器光谱维和空间维像元中心波长的定标。由定标结果可知,振动试验后光谱仪分辨率为0.40 nm,与振动试验前相比没有发生变化;光谱维像元中心波长向长波偏移0.08 nm(小于一个像元);空间维像元光谱弯曲(光谱smile) 向短波方向弯曲,最大弯曲值为0.96 nm,近似于振动试验前光谱弯曲值。由此验证了谱线匹配技术进行星上光谱定标的可行性。  相似文献   

14.
光栅色散型成像光谱仪室内外光谱定标中心波长偏移研究   总被引:1,自引:0,他引:1  
成像光谱仪使用前需要对其进行光谱定标以确定其各光谱通道的中心波长和光谱带宽。但是室内外光谱定标实验结果表明随着使用环境的变化成像光谱仪各通道的中心波长和带宽将发生变化。对光栅色散型成像光谱仪各光谱通道的中心波长室内外定标结果的偏移进行研究,从光栅色散型成像光谱仪的光学结构和工作环境参数出发对造成其中心波长偏移的因素进行分析和建模,对震动、机械形变和浓度等主要影响因素进行理论推导和数量级估算,结合实验结果进行对比分析。理论推导和实验数据分析都表明光栅色散型成像光谱仪室内外光谱定标获得的各通道中心波长的偏移量与各通道的本征波长成二次函数的关系,其中震动和机械形变所带来的系统光路结构的细微改变是造成其中心波长偏移的主要因素,使用环境温度的差异也对该成像光谱仪各光谱通道的中心波长具有一定的影响。  相似文献   

15.
通常利用单色仪输出的单色光对空间遥感光谱仪进行波长定标。提出以空间遥感光谱仪的置信度为标准,来评价宽波段单色仪高精度波长定标精度的方法。通过对仪器精度的分析,分别求出单色仪的波长的重复性误差和偏差。应用高压汞灯的本征谱和光栅衍射多级谱作为定标谱线,避免更换灯源带来的误差。通过粗细定标相结合的方法,缩短扫描时间,并且运用高斯拟合对波峰进行精确定位,缩小误差。最后利用高次拟合得到的关系式,测出单色仪波长精度,计算出空间遥感光谱仪定标的置信度。以1.5 M单色仪为例,单色仪在200~840 nm波段内波长精度±0.016 nm,则空间遥感光谱仪的波长精度达到±0.050 nm的置信度为99.82%。  相似文献   

16.
空间外差光谱仪干涉图数据处理   总被引:4,自引:0,他引:4  
空间外差光谱技术是一种新型的超分辨光谱技术。介绍了空间外差光谱仪的基本原理,并针对其特点提出了干涉图数据处理的方法。首先通过一阶差分对干涉图进行去基线处理,然后使用三角函数作为切趾函数对干涉图进行切趾,并对傅里叶变换光谱进行相位校正,最后采用已知双线光源对空间外差光谱仪原理试验装置进行波长定标。文章以Na双线与Hg谱线进行波长定标,得到了波长定标曲线。通过以上的方法对空间外差光谱仪干涉图数据进行处理,能有效地提高干涉图反演光谱的精度。  相似文献   

17.
星载大气痕量气体差分吸收光谱仪光谱定标技术研究   总被引:1,自引:0,他引:1  
星载大气痕量气体差分吸收光谱仪用于遥感监测痕量气体的全球分布。该载荷探测地球大气或表面反射、散射的紫外/可见光辐射,利用差分吸收光谱算法来解析痕量污染气体成分的分布和变化。光谱定标是仪器遥感数据定量化的前提和基础,定标的精度直接决定了仪器研制和应用水平的高低。针对星载大气痕量气体差分吸收光谱仪视场大、波长宽、空间分辨率和光谱分辨率高的特点,提出了相应的光谱定标方法,建立了定标装置,通过寻峰和回归分析计算光谱定标方程,实现了对载荷的全视场光谱定标工作。并利用太阳光的夫琅禾费线对定标精度进行了检验。  相似文献   

18.
紫外可见偏振成像光谱仪中沃拉斯顿棱镜的色散效应会导致探测器同一空间通道的中心坐标发生偏移,影响目标信号探测精度。根据偏振解调算法,利用沃拉斯顿棱镜出射的两正交分量调制光谱(S光和P光)实现偏振信息解调时,还需要完成光谱匹配。针对这一问题,提出了一种光谱定标与匹配方法。首先利用平行光源标定了仪器视场角与空间维像元的对应关系,提取出各空间通道对应的像元坐标集合并确定了视场定标方程;在同一空间通道内,通过低压汞灯标准光源对波长与像元的对应关系进行标定,得出光谱定标方程;利用视场定标和光谱定标结果完成正交分量光谱的匹配;最后利用太阳光谱中Fraunhofer线的特征波长对定标结果进行了检验。结果表明:紫外可见偏振成像光谱仪正交分量的光谱吸收峰位具有较好的一致性,定标值和标准值的偏差在0.1 nm以内,这验证了定标结果的准确性。  相似文献   

19.
分析了谱线漂移在地面辐射定标、星上辐射定标和在轨对地观测等环节对成像光谱仪辐射测量的影响,建立了从实验室辐射定标到星上辐射定标再到在轨对地观测全过程的辐射传递模型,并通过仿真分析求解了成像光谱仪入瞳处辐射测量不确定与谱线漂移之间的关系。结果表明,谱线漂移导致的辐射测量误差与谱线漂移量和入瞳辐亮度的分布梯度成正比;光谱带宽偏差对测量精度的影响程度较中心波长误差高一个数量级。对于可见近红外(VNIR)波段平均光谱带宽10 nm、短波红外(SWIR)波段平均光谱带宽20 nm的典型成像光谱仪,要保证谱线漂移引起的辐射测量不确定度小于6%,实现成像光谱仪在轨观测时入瞳处的辐射测量绝对精度优于10%,可见近红外波段中心波长偏差应不大于2 nm,光谱带宽偏差应不大于0.1 nm,短波红外波段中心波长偏差应不大于3 nm,光谱带宽偏差应不大于0.1 nm。  相似文献   

20.
为了使光谱仪能同时兼顾宽吸收光谱范围和高光谱分辨率两种特性,搭建了一台近红外虚像相位阵列光谱仪,单帧谱宽约为25 nm(140 cm-1),光谱分辨率为4.5 pm(0.024 cm-1),结合改进的旋转光栅结构,实现了1.26~1.50μm的宽光谱检测。使用超连续光源及光学吸收多通池,在1.43~1.45μm处,以CO2为例开展了宽带高分辨光谱测量技术研究,使用图像增强算法提高了弱吸收的光谱提取精度,考虑光谱仪的仪器展宽进而提升了气体参数反演准确度。实测光谱与理论光谱的对比结果验证了系统测量的准确性与可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号