首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了提升溶液法制备的蓝色荧光有机发光二极管(OLEDs)的效率,采用了基于热激活延迟发光(TADF)的激基复合物作为主体材料。TADF激基复合物主体可以利用反向系间窜跃上转换形成单线态激子并将能量传递到客体,从而可以同时利用发光层中的三线态激子和单线态激子,以提升蓝色荧光器件的效率。选择蓝色荧光材料1-4-Di-[4-(N,N-diphenyl)amino]styryl-benzene(DSA-ph)作为客体发光材料,4,4′,4″-T-ris(carbazol-9-yl)triphenylamine(TCTA)掺杂1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)(TPBi)作为热激活延迟荧光激基复合物主体,通过溶液法制备了蓝色荧光OLEDs。通过测试TCTA,TPBi以及TCTA掺杂TPBi的光致发光光谱发现,与TCTA和TPBi相比,TCTA掺杂TPBi的光致发光谱(PL)发生了明显的红移(峰值波长变为437 nm),而且光谱变宽,证明了TCTA∶TPBi激基复合物的形成。通过对于DSA-ph掺杂激基复合物主体的薄膜与DSA-ph掺杂poly(methyl methacrylate)(PMMA)的薄膜进行PL测试发现,两者发光峰相同,都是来自DSA-ph的发光,说明激基复合物主体将能量传递到了DSA-ph;DSA-ph的吸收光谱与激基复合物主体的PL光谱存在很大重叠,说明激基复合物主体与DSA-ph的能量传递非常有效;通过对激基复合物主体掺杂不同浓度客体的薄膜进行瞬态PL衰减测试发现,与纯DSA-ph的寿命相比,DSA-ph掺杂激基复合物主体之后其寿命会延长,纯DSA-ph的寿命只有1.19 ns,DSA-ph掺杂激基复合物主体的荧光衰减曲线与激基复合物主体的荧光衰减曲线相似,这进一步证明了激基复合物主体将能量传递到了DSA-ph。研究了主体引入以及DSA-ph掺杂浓度对器件性能的影响。对于器件的亮度、电流密度、电压、电流效率、电致发光光谱等参数进行了测试,与不采用激基复合物主体的器件相比,采用激基复合物主体的器件性能明显改善,在DSA-ph掺杂浓度为10%时,器件亮度从2133.6 cd·m^-2提升到了3597.6 cd·m^-2,器件效率从1.44 cd·A-1提升到了3.15 cd·A-1,发光峰只有来自DSA-ph的发光。采用TADF激基复合物主体的方法有潜力实现溶液法制备的高效蓝色荧光OLEDs。  相似文献   

2.
将蓝光激基复合物mCP∶PO-T2T和磷光超薄层结合,分别制备了基于Ir(pq)2acac(~0.5 nm)/mCP∶PO-T2T/Ir(pq)2acac(~0.5 nm)结构的双色互补色和基于Ir(ppy)3(~0.5 nm)/mCP∶PO-T2T/Ir(pq)2acac (~0.5 nm)结构的三基色非掺杂白光有机发光二极管(White organic light emitting diodes, WOLED),以探索超薄层在激基复合物中的应用。所制备的双色互补色WOLED,其最大电流效率、功率效率和外量子效率分别为46.1 cd/A、43.9 lm/W和22.2%,而三基色WOLED所实现的最大电流效率、功率效率和外量子效率分别为66.8 cd/A、63.5 lm/W和24.2%。研究分析表明,从高能的蓝光激基复合物发光层向两侧低能的红光和绿光磷光超薄层有效的能量传递是实现非掺杂WOLED高效率的原因。  相似文献   

3.
研究了苯胺类化合物3DTAPBP(2,2’-二(3-二对甲苯基氨基苯基)联苯)的双分子激发态。首先,制备了3DTAPBP的单层有机发光二极管(OLED):ITO/MoO3/3DTAPBP/LiF/Al,其电致发光光谱中不仅含有3DTAPBP的单体激子发光(中心波长约420 nm,蓝光),还观察到电致激基缔合物的发光(峰值为578 nm, 黄光)。由单体发光和电致激基缔合物发光可以混合得到白光,如:7.0 V电压下,3DTAPBP的单层器件的色坐标为(0.36, 0.31),器件结构非常简单。不过由于单层器件中载流子注入和传输的严重不平衡,亮度和效率极低。此外,在3DTAPBP与电子传输材料TPBi(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)构成的双层器件(ITO/MoO3/3DTAPBP/TPBi/LiF/Al)中,由于载流子在界面处的堆积,观察到3DTAPBP/TPBi界面处形成激基复合物发光(中心波长约490 nm),对应光子的能量和3DTAPBP与TPBi的HOMO(最高占有轨道)-LUMO(最低未占有轨道)能级差基本吻合。对双层器件的电致发光光谱进行洛伦兹分解拟合,发现随着电压的增加,激基复合物发光减弱,原因是更多的载流子越过3DTAPBP/TPBi界面势垒,相应的3DTAPBP的单体激子发光逐渐增强。4,6和8 V驱动电压下,双层器件的色坐标分别为(0.28, 0.35),(0.24, 0.29)和(0.27, 0.28),随着驱动电压的增大,发光颜色逐渐趋于白色。双层器件的最高亮度和最大电流效率分别达1 349.2 cd·m-2,1.22 cd·A-1。  相似文献   

4.
Ir配合物染料调节有机发光二极管发光特性   总被引:3,自引:3,他引:0  
为了研究有机发光二极管(OLED)中发光特性与材料能带结构的关系,把不同的Ir配合物染料掺杂到结构相同的OLED器件中。OLED结构为ITO/NPB/CBP∶染料/TPBi/Mg∶Ag/Ag,染料分别为Ir(MDQ)2(acac)、Ir(ppy)3和Firpic。实验表明,这3种染料对应的掺杂器件分别发红光、绿光和蓝光。3个器件的阈值电压基本一致((6为了研究有机发光二极管(OLED)中发光特性与材料能带结构的关系,把不同的Ir配合物染料掺杂到结构相同的OLED器件中。OLED结构为ITO/NPB/CBP:染料/TPBi/Mg:Ag/Ag,染料分别为Ir(MDQ)2(acac)、Ir(ppy)3和Firpic。实验表明,这3种染料对应的掺杂器件分别发红光、绿光和蓝光。3个器件的阈值电压基本一致((6±0.1) V),但是,在100 cd/m2亮度下,绿光器件外量子效率最高(7.64%),蓝光器件外量子效率(5.65%)与绿光相近,红光器件外量子效率最低(2.75%)。分析认为,由于染料的掺杂浓度低,器件结构和载流子传输特性变化小,因而掺杂对阈值电压影响小;CBP与掺杂染料间存在能量转移,红色染料能级差小,非辐射跃迁几率大,发光效率最低;相比于绿光,蓝色染料能级差大,跃迁几率小,因此发光效率比绿光低。实验还发现,染料的发光波长与其能级差相比有红移现象,分析认为,这是由激发态能量振动弛豫和系间窜越过程形成的。  相似文献   

5.
基于PVK∶NPB掺杂体系的有机电致发光器件的性能   总被引:4,自引:2,他引:2       下载免费PDF全文
利用溶液旋涂的方法,通过改变复合功能层中poly(N-vinylcarbazole)(PVK)和N,N′-bis-(1-naph-thyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)的质量比,制备结构为indium-tin-oxide(ITO)/PVK:NPB/2,9-dimenthyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Mg:Ag的有机电致发光器件,并对器件的电致发光特性进行了表征。研究结果表明,当复合功能层中PVK和NPB的质量比为1:1时器件性能最好,在该器件的电致光谱中,除了NPB的本征谱峰外,在长波方向还出现了一个位于640nm处的谱峰,这是PVK和NPB产生的电致激基复合物发光,并且随着驱动电压的增加,电致激基复合物的发光强度也相对增强。  相似文献   

6.
白光OLED微型显示器在信息显示领域具有重要的应用。采用真空镀膜系统,依次蒸镀Ag/ITO复合薄膜作为阳极结构,共蒸制备Mg∶Ag复合膜作为半透明阴极结构,NPB作为空穴传输材料和黄光主体材料,rubrene作为黄光掺杂料,AND作为蓝光主体料,DSA-Ph作为蓝光掺杂料,Alq3作为电子传输材料,以结构和工艺简化的蓝、黄光互补色来实现白光,通过共蒸发形式制备了结构为Ag/ITO/NPB/NPB∶rubrene(1.5%)/ADN∶DSA-Ph(x%/x=2,5,8)/Alq3/Mg∶Ag的白光OLED微型显示器,利用由Photo Research PR655光谱仪、Keithley 2400程控电源组成的光谱测试系统对器件的光电性能进行表征,研究了蓝光掺杂比对白光OLED微型显器性能的影响。结果表明,随着蓝光掺杂比的增加,白光OLED微型显示器的亮度先增加后降低,蓝光、黄光峰位有所偏移,色坐标发生一定的漂移,蓝光色纯度增加,可通过调控发光材料掺杂比实现白光OLED微型显示器性能的可控制备。初步优化获得的蓝、黄混合白光OLED微型显示器的器件,当驱动电压为5.0 V时,器件亮度达到3 679 cd·m-2,CIE坐标为(0.263,0.355)。  相似文献   

7.
在空穴传输层TCTA与电子传输层TPBi之间引入磷光染料Ir(ppy)3超薄发光层,制备了结构为ITO/MoO_3(2 nm)/NPB(40 nm)/TCTA(10 nm)/Ir(ppy)3(xnm)/TPBi(40 nm)/LiF(1 nm)/Al(80 nm)的非掺杂磷光有机电致发光器件。通过调控非掺杂发光层的厚度,详细研究了Ir(ppy)3层厚度对器件性能的影响。实验结果表明,当非掺杂发光层厚度为0.2 nm时,器件的性能最好,器件的亮度、效率和外量子效率分别达到26 350 cd·m~(-2)、42.9 cd·A~(-1)和12.9%。研究结果表明,采用超薄的非掺杂发光层可以简化器件结构和制备工艺,获得高效率的OLED器件。  相似文献   

8.
采用对比使用掺杂系统的有机电致发光器件(OLEDs)在不同偏置电压下电致发光(EL)光谱的方法,观察了主体材料8-hydroxyquinoline aluminum(Alq3)中掺杂红色荧光染料4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4Hpyran(DCJTB)发射光谱的变化,研究了偏置电压对掺杂系统中载流子复合区域的影响。另外,通过对比采用不同主体材料的掺杂系统的电致发光(EL)和光致发光(PL)光谱,讨论了主体材料Alq3和N,N′-diphenyl-N,N′-bis(1-naphthyl)(1,1′-biphenyl)-4,4′-diamine(NPB)不同的掺杂效果。结果表明,随着偏置电压的增大,使用掺杂系统的器件中载流子复合区域逐渐向空穴传输层(HTL)移动,作为主体材料应具有高的能量传递效率,且应对染料具有低的浓度猝灭效应。  相似文献   

9.
从荧光-磷光复合结构的有机电致发光器件的研究入手,采用OXD-7作为蓝色荧光发光层,Ir(MDQ)2acac掺杂在母体材料作为红橙磷光发光层,设计制备了双波段白光有机电致发光器件。研究中发现,OXD-7,Alq3和NPB的三组分协同作用可以导致电致激基复合物的产生,以及由此导致的光谱红移,并使得器件发光效率降低。通过插入TDAF中间层可以有效地抑制激基复合物的产生,同时,通过控制载流子传输的平衡,以及磷光材料的掺杂浓度,可以获得器件发光亮度、效率的提升。  相似文献   

10.
以乙二胺和二苯乙二酮为原料合成了5,6-二苯基-2,3-二氢吡嗪(Dpdhpz),Dpdhpz在Ir Cl3·3H2O或三氟化硼乙醚等路易斯酸作用下发生自身氧化偶联得到了5,5',6,6'-四苯基-2,2'-联吡嗪(Dbppz)。在四氢呋喃(THF)溶液中,Dbppz的光致发光(PL)为深蓝色,最大发射峰位于400 nm,CIE坐标为(0.16,0.03)。Dbppz在THF溶液中最大量子效率为89%,在聚苯乙烯薄膜(Dbppz质量分数5%)中的量子效率为78%。将Dbppz制备成器件结构为ITO/HAT-CN(5 nm)/NPB(40 nm)/Dbppz(20 nm)/Tm Py PB(40 nm)/Li F(1 nm)/Al(100 nm)的非掺杂电致发光器件。实验发现,该非掺杂器件并没有产生预期的蓝色发光,而是意外地得到了一个白光器件。我们推测产生白光发射的原因与发光层和空穴传输层之间相互作用有关。由于空穴传输层NPB的芳胺结构具有电子给体性质,而Dbppz的吡嗪结构具有电子受体结构,发光层与空穴传输层的界面发生了电子给体和电子受体的相互作用,形成了激基复合物。在电致发光(EL)光谱中,除了Dbppz发光材料在415 nm的发射外,在550 nm还出现强的激基复合物的发射。激基复合物的产生使得EL发射出现了长波长光谱,同时减弱了发光层的"本征"发光。蓝色"本征"发光与激基复合物的黄色发光构成了一个CIE坐标值为(0.27,0.33)(亮度100 cd/m2)的白光器件。器件最大外量子效率、最大功率效率和最大电流效率分别为44%、0.74 lm/W和1.04 cd/A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号