共查询到20条相似文献,搜索用时 15 毫秒
1.
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 M KOH电解液中,3DOM Fe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时,3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据. 相似文献
2.
Shunxi Li Ruoyu Xu Hui Wang Dan J. L. Brett Shan Ji Bruno G. Pollet Rongfang Wang 《Journal of Solid State Electrochemistry》2017,21(10):2947-2954
A nitrogen (N)-doped mesoporous carbon material exhibiting ultra-high surface area was successfully synthesized from sheep bones via a facile and low-cost method. The obtained carbon material had an ultra-high specific surface area of 1961 m2 g?1 and provided rich active sites for the oxygen reduction reaction (ORR), which in turn resulted in high electrocatalytic activity. It was found that the pore size distribution for the newly prepared carbonaceous material fell in the range of 1–4 nm. Benefiting from its high surface area and the presence of pyridine-N and quaternary-N species, the as-prepared carbon material exhibited excellent ORR activity in an oxygen-saturated 0.1 M KOH solution, compared to commercial Pt/C (10 wt%). Due to its high ORR catalytic activity, stability and low-cost, using sheep bone as C and N precursors to produce N-doped carbon provides an encouraging step toward the goal of replacing commercial Pt/C as fuel cell cathode electrocatalyst. 相似文献
3.
Byon HR Suntivich J Crumlin EJ Shao-Horn Y 《Physical chemistry chemical physics : PCCP》2011,13(48):21437-21445
We report a facile synthesis of Fe-N-C catalysts based on the surface functionalization of multi-walled carbon nanotubes (MWCNTs), which show high activity and stability for oxygen reduction reaction (ORR) in acid. Fe-N-MWCNT catalysts, whose ORR mass activities could vary by 3-4 times depending on the choice of Fe precursors, were found to have considerably higher ORR mass activity and higher stability than N-modified MWCNTs (N-MWCNTs). The Fe-N-MWCNT catalyst with a dominant Fe-N(x) moiety (with x ≈ 4) and a surface Fe/C ratio of ~0.004 exhibits the highest ORR mass activity in acid (~0.7 mA mg(-1)(Fe-N-MWCNT) at 0.8 V vs. RHE), where the lower mass activity of other Fe-N-MWCNT catalysts can be attributed to lower Fe/C ratios and Fe-N(x) moieties (with x smaller than 4) as revealed from X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Moreover, the enhanced stability of Fe-N-MWCNTs in comparison to N-MWCNTs can be attributed to less H(2)O(2) production during ORR as determined from rotating ring disk electrode (RRDE) measurements, and higher activity for H(2)O(2) electro-reduction by rotating disk electrode (RDE) measurements. The large surface Fe/C ratio and Fe-N(x) moiety corresponding to high ORR activity and stability of Fe-N-MWCNTs demonstrate that surface functionalization can be very helpful to graft active catalytic sites onto carbon nanostructures, and to provide insights into the ORR mechanism of non-noble metal catalysts (NNMCs) for proton exchange membrane fuel cells (PEMFCs). 相似文献
4.
5.
6.
《中国化学快报》2023,34(2):107462
The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However, the exploration of N, S co-doped carbon with well-defined active sites and hierarchical porous structures are still limited. In this study, we prepared a series of edge-enriched N, S co-doped carbon materials through pyrolysis of thiourea (TU) encapsulated in zeolitic imidazolate frameworks (TU@ZIF) composites, which delivered very good oxygen reduction reaction (ORR) performance in alkaline medium with onset potential of 0.94 V vs. reversible hydrogen electrode (RHE), good stability and methanol tolerance. Density functional theory (DFT) calculations suggested that carbon atoms adjacent to N and S are probable active sites for ORR intermediates in edge-enriched N, S co-doped carbon materials because higher electron density can enhance O2 adsorption, lower formation barriers of intermediates, improving the ORR performance comparing to intact N, S co-doped carbon materials. This study might provide a new pathway for improving ORR activity by the integration engineering of edge sites, and electronic structure of heteroatom doped carbon electrocatalysts. 相似文献
7.
Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction 总被引:3,自引:0,他引:3
Kongkanand A Kuwabata S Girishkumar G Kamat P 《Langmuir : the ACS journal of surfaces and colloids》2006,22(5):2392-2396
Significant enhancement in the electrocatalytic activity of Pt particles toward oxygen reduction reaction (ORR) has been achieved by depositing them on a single wall carbon nanotubes (SWCNT) support. Compared to a commercial Pt/carbon black catalyst, Pt/SWCNT films cast on a rotating disk electrode exhibit a lower onset potential and a higher electron-transfer rate constant for oxygen reduction. Improved stability of the SWCNT support is also confirmed from the minimal change in the oxygen reduction current during repeated cycling over a period of 36 h. These studies open up ways to utilize SWCNT/Pt electrocatalyst as a cathode in the proton-exchange-membrane-based hydrogen and methanol fuel cells. 相似文献
8.
《中国化学快报》2022,33(8):3999-4002
Constructing molecule@support composites is an attractive strategy to realize heterogeneous molecular electrocatalysis. Herein, we synthesized metal-organic framework (MOF)-supported molecular catalysts for hydrogen evolution and oxygen reduction reaction (HER/ORR). Ligand exchange strategy was used to prepare molecule@support hybrids due to the same functional group. A series of hybrids were obtained using Co porphyrin (1) and different MOFs including MIL-88(Fe), MOF-5(NiCo) and UIO-66(Zr). The 1@MOF-5(NiCo) had the best HER and ORR activity compared with 1@MIL-88(Fe) and 1@MOF-5(NiCo). These hybrids also exhibited tunable selectivity for ORR with four-electron process, which can be attributed to the synergistic effect of porphyrin molecules and MOFs. This work provides a possibility for molecular catalysts to improve activity of HER and tune selectivity of ORR. 相似文献
9.
以细菌纤维素为前驱体简便制备氮掺杂碳纤维气凝胶作为高效氧还原催化剂 总被引:1,自引:0,他引:1
数十年来,碳气凝胶因其在催化剂载体、电容器和锂电池电极材料以及吸附剂等领域的潜在应用而备受关注.然而,传统碳气凝胶的制备往往使用昂贵且有毒的前驱体,其方法也较为复杂,不利于大规模生产及应用.本文介绍了一种以细菌纤维素为前驱体制备氮掺杂碳纤维气凝胶的方法.该方法廉价高效,简单易行且对环境无害.所制气凝胶具有密度低、孔隙度高、比表面积大以及导电性良好等优点.它继承了细菌纤维素生物质优异的三维交联多孔结构的特点,可直接用作氧还原催化剂,表现出优异的催化性能,预示着其广泛的应用前景.这在该领域的应用报道尚属首次. 相似文献
10.
Zhang Yafei Yin Xiang Jiang Hao Hao Jiayu Wang Yanqiu Yu Jiawen Li Dongwei Liu Yang Li Jie 《Journal of the Iranian Chemical Society》2019,16(12):2575-2585
Journal of the Iranian Chemical Society - The oxygen reduction reaction (ORR) is a key process to limit the property of the metal-air batteries. In this paper, cobalt nanoparticles embedded in... 相似文献
11.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。 相似文献
12.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。 相似文献
13.
Xiaojing Jiang Jianian Chen Fenglei Lyu Chen Cheng Qixuan Zhong Xuchun Wang Ayaz Mahsud Liang Zhang Qiao Zhang 《Journal of Energy Chemistry》2021,(8):482-491
Controllable fabrication of Fe-N-C based single-atom catalysts (SACs) for enhanced electrocatalytic performance is highly desirable but still challenging.Here,a... 相似文献
14.
15.
16.
Tharamani C. Nagaiah Shankhamala Kundu Michael Bron Martin Muhler Wolfgang Schuhmann 《Electrochemistry communications》2010,12(3):338-341
A new approach to synthesize nitrogen-doped carbon nanotubes (NCNTs) as catalysts for oxygen reduction by treating oxidized CNTs with ammonia is presented. The surface properties and oxygen reduction activities were characterized by cyclic voltammetry, rotating disk electrode and X-ray photoelectron spectroscopy. NCNTs treated at 800 °C show improved electrocatalytic activity for oxygen reduction as compared with commercially available Pt/C catalysts. 相似文献
17.
《Journal of Energy Chemistry》2016,(2)
We report the synthesis, characterisation and catalytic performance of two nature-inspired biomassderived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste(lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO_3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon(23%), nitrogen and sulphur(1%), limiting the surface area to 23 m~2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m~2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s. 相似文献
18.
Nitrogen-doped carbon-based materials are promising non-platinum group metal electrocatalysts for the oxygen reduction reaction (ORR).Understanding their ORR ac... 相似文献
19.
Gao Jian Ma Na Tian Jianjun Shen Cong Wang Lili Yu Pengfei Chu Yuanyuan Liu Wei Tan Xiaoyao Li Xifei Yin Zhen 《Journal of Solid State Electrochemistry》2018,22(2):519-525
Journal of Solid State Electrochemistry - One-pot strategy to fabricate N, P co-doping carbon was developed based on the functional ionic liquid (IL) as the N, P, and C precursors. The IL featuring... 相似文献
20.
Atomic-scale deformation in N-doped carbon nanotubes 总被引:1,自引:0,他引:1
Sun CL Wang HW Hayashi M Chen LC Chen KH 《Journal of the American Chemical Society》2006,128(26):8368-8369
We present the N-doping induced atomic-scale structural deformation in N-doped carbon nanotubes by using density functional theory calculations. For substitutional N-doped nanotube clusters, the N dopant with an excess electron lone pair exhibits the high negative charge, and the homogeneously distributed dopants enlarge the tube diameter in both zigzag and armchair cases. On the other hand, in pyridine-like N-doped ones, the concentrated N atoms result in a positively curved graphene layer and, thus, can be responsible for tube wall roughness and the formation of interlinked structures. 相似文献