首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
SH波在压电材料条中垂直界面裂纹处的散射   总被引:1,自引:0,他引:1  
研究了SH波在压电材料条中裂纹处的散射.压电材料条两侧涂有相同梯度参数的两个半无限大功能梯度材料,裂纹垂直于界面.通过Fourier变换,利用边界条件把问题转化为柯西核奇异积分方程,然后利用Chebyshev多项式对奇异积分方程进行数值求解.通过数值计算,分析讨论了压电条的几何参数和SH波频率对标准动应力强度因子的影响.  相似文献   

2.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

3.
研究粘结于均匀材料基底上功能梯度材料涂层平面运动裂纹问题,假设功能梯度材料剪切模量和密度为坐标的指数函数,而泊松比为常数.采用Fourier变换和传递矩阵法将该混合边值问题转化为一对奇异积分方程,通过数值求解奇异积分方程组获得功能梯度材料涂层平面运动裂纹的应力强度因子.考察了结构几何尺寸、裂纹运动速度以及材料梯度参数对运动裂纹的应力强度因子的影响,发现材料梯度参数、结构几何尺寸、裂纹长度以及运动速度均对功能梯度材料动态断裂行为有显著影响.  相似文献   

4.
研究反平面载荷作用下压电/压磁双材料的周期界面裂纹问题,压电/压磁双材料由有限厚度的功能梯度压电层和功能梯度压磁层粘结而成.为便于分析,假设压电层和压磁层的材料性质沿着裂纹的法线方向呈指数变化,基于分离变量和Hilbert核奇异积分方程方法,获得应力强度因子的数值解.数值算例讨论层厚、周期带长度、梯度参数以及材料参数变动等对应力强度因子的影响.结果发现层厚以及裂纹间距的增大会降低裂纹尖端应力强度因子,梯度参数的改变对应力强度因子也有显著的影响.材料参数变动的讨论发现弹性参数的变动对应力强度因子影响最大,其次为电参数,磁参数的变动对应力强度因子影响最小.  相似文献   

5.
利用两相材料中集中力的基本解,建立了求解曲线型刚性线夹杂和两相材料界面相交问题的弱奇异积分方程。通过Cauchy型奇异积分方程主部分析方法,得出穿过两相材料界面的曲线型刚线性在交点处的奇性应力指数及交点处角形域内的奇性应力,并利用奇性应力定义了交点处的应力奇异因子。通过对弱奇异积分方程的数值求解,得出了刚性线端点和交点处的应力奇异因子。  相似文献   

6.
带功能梯度材料的压电底层中周期裂纹对SH波的散射   总被引:1,自引:0,他引:1  
本文研究了压电材料底层中周期裂纹对SH波的散射,通过渗透边界条件和界面上连续边界条件,将问题转化为一组带Hilbter核的奇异积分方程。利用利用切比雪夫多项式逼近方法求解Hilbter核的奇异积分方程,给出了标准动应力强度因子和电位移强度因子的表达式。最后通过数值算例说明了几何参数、物性参数,入射波频率和振幅等对强度因子的影响.  相似文献   

7.
李冉  万永平 《力学季刊》2019,40(4):740-752
本文研究了含非完整界面的功能梯度压电复合材料的Ⅲ型裂纹问题.此裂纹垂直于非完整界面,采用弹簧型力电耦合界面模型模拟非完整界面.界面两侧材料的性质,如弹性模量、压电常数和介电常数均假定呈指数函数形式且沿着裂纹方向变化.运用积分变换法将裂纹面条件转换为奇异积分方程,并使用Gauss-Chebyshev方法对其进行数值求解.根据算例结果讨论了一些退化问题并分析了裂纹尖端强度因子与材料的非均匀系数和非完整界面参数的关系.  相似文献   

8.
研究了功能梯度压电上、下半空间和均匀压电层组成的夹层结构中SH波的传播性能,上、下功能梯度半空间的材料性能沿垂直于界面方向以指数函数形式变化。首先推导了SH传播时电弹场的解析解,然后利用界面条件得到了行列式形式的频散方程。基于推导的频散方程,通过数值算例表明了材料性能梯度变化、压电层厚度和材料组合方式对相速度的影响,结果对功能梯度压电材料在声波器件中的应用有参考价值。  相似文献   

9.
李星  郭丽芳 《力学学报》2007,39(6):760-766
利用奇异积分方程方法研究两个半无限大的功能梯度压电压磁材料粘结,在渗透和非 渗透边界条件下的III型裂纹问题. 首先通过积分变换构造出原问题的形式解,然 后利用边界条件通过积分变换与留数定理得到一组奇异积分方程, 最后利用Gauss-Chebyshev方法进行数值 求解,讨论材料参数、材料非均匀参数以及裂纹几何形状等对裂纹尖端应力 强度因子的影响. 从结果中可以看出,压电压磁复合材料中反平面问题的应力奇异性 形式与一般弹性材料中的反平面问题应力奇异形式相同,但材料梯度参数对功能梯度压电压 磁复合材料中的应力强度因子和电位移强度因子有很大的影响.  相似文献   

10.
基于所有接触面间光滑的假设,研究了同时受压的功能梯度层与弹性层间的单退让平面接触问题.假设功能梯度层是各向同性的非均匀材料,其剪切模量按照指数函数形式变化.利用Fourier积分变换把问题转化为求解奇异积分方程.然后利用Gauss-Chebyshev求积公式和迭代法得到下层接触应力和退让接触半径的数值解.最后在数值算例中,分别讨论了两层间的厚度比值,功能梯度层的硬度参数,以及上层接触半径对退让接触半径与下层接触应力的影响.  相似文献   

11.
In this paper, the axisymmetric torsional problem of a coating structure consisting of a surface coating, a functionally graded layer and a substrate under a rigid cylindrical punch is investigated. The coating and substrate are homogeneous materials with distinct physical properties while the intermediate layer is inhomogeneous with its shear modulus changing exponentially along the thickness direction. The Hankel integral transform technique is employed to reduce the torsional problem to a singular integral equation with a Cauchy kernel. The circumferential shear stress and displacement fields in the coating structure are calculated by solving the integral equation numerically. The results show that the stiffness ratio has significant effect on the distribution of the circumferential stress and displacement at the interface.  相似文献   

12.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

13.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

14.
This work deals with the mode III fracture problem of a cracked functionally graded piezoelectric surface layer bonded to a cracked functionally graded piezoelectric substrate. The cracks are normal to the interface and the electro-elastic material properties are assumed to be varied along the crack direction. Potential and flux types of boundary condition are assigned on the edge of the surface layer. The problem under the assumptions of impermeable and permeable cracks can be formulated to the standard singular integral equations, which are solved by using the Gauss–Chebyshev technique. The effects of the boundary conditions, the material properties and crack interaction on the stress and electric displacement intensity factors are discussed.  相似文献   

15.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

16.
In this paper, the mixed-mode penny-shaped crack problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under in-plane electromechanical loadings. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

17.
The dynamic response of a functionally graded layered structure with a crack crossing the interface is analyzed. The in-plane impact loading condition is considered. By using the Laplace and Fourier integral transforms, singular integral equation method and residue theory, the present problem is reduced to a singular integral equation in the Laplace transform domain. The influences of Young’s modulus ratio, thickness ratio, and crack length and location on the dynamic stress intensity factors (DSIFs) are investigated. Particularly, the DSIFs corresponding to different crack locations are shown in the case when the crack center moves from one layer to another layer through the interface. The peak and static values and overshoot characteristics of the DSIFs are analyzed. It is found that these values typically exhibit kinking behavior when the crack tips arrive at the interface. This study is different from previous other investigations in the following respects: (1) the dynamic response of a crack crossing the interface of a functionally graded structure is studied analytically, which has hardly been done in the past and (2) the present model can be reduced to some important problems, such as a functionally graded coating-substrate structure with a crack in the graded coating or homogeneous substrate or one intersecting the interface.  相似文献   

18.
In fracture analysis of piezoelectric devices, the structural dimension is often assumed to be infinite at least in one direction. However, all practical piezoelectric structures are finite and their dimensions in different directions are often comparable and cannot be simplified as infinite. The assumption of infinite dimension may lead to inexact theoretical results. The present work aims at studying the interfacial fracture behavior of a functionally graded piezoelectric layer on a dielectric substrate with finite dimension. The crack problem is solved by the methods of Fourier series and Cauchy singular integral equation. Parametric studies on the stress intensity factor (SIF) reveal the following: (a) when a crack tip is near to an interface end, its SIF is mainly governed by the end effect; (b) when a crack is far from the interface ends and the piezoelectric layer is thin, its SIF is principally affected by the thickness of the piezoelectric layer, and (c) only when a crack is far from the interface ends and meanwhile the piezoelectric layer is thick will its SIF be dominated by the non-homogeneity parameter, and in this case, the SIF increases with the increasing non-homogeneity parameter.  相似文献   

19.
This paper investigates the singular electromechanical field near the crack tips of an internal crack. The crack is perpendicular to the interface formed by bonding two half planes of different functionally graded piezoelectric material. The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The singular integral equations for impermeable and permeable cracks are derived and solved by using the Gauss–Chebyshev integration technique. It shows that the stresses and electrical displacements around the crack tips have the conventional square root singularity. The stress intensity and electric displacement intensity factors are highly affected by the material nonhomogeneity parameters β and γ. The solutions for some degenerated problems can also be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号