首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
甲醇在Pd基电催化剂上的氧化   总被引:2,自引:0,他引:2  
以多壁碳纳米管(MWCNT)和碳黑为载体, 用交替微波加热的方法制备了担载型Pd电催化剂, 并表征了其微观形貌和电化学性能. 透射电镜(TEM)和X射线衍射(XRD)结果显示, Pd在MWCNT载体上有较好的分散度, 平均粒径为4 nm. 循环伏安、计时电位和交流阻抗的测试结果表明, 在碱性溶液中, Pd/MWCNT显示出良好的甲醇氧化性能. 在Pd/MWCNT催化剂上, 甲醇氧化的起始电位比在Pt/C上负移100 mV 左右. Pd/MWCNT高的催化活性不仅与它的高的活性表面积有关, 而且和Pd与载体MWCNT之间的协同作用有关.  相似文献   

2.
An important research target in DMFCs is to find better catalyst materials that are cheaper, less-prone to poisoning and more catalytically active. In this context, metal oxides with good catalytic properties and stronger interaction with Pt nanoparticles can generate active interfacial regions for electrocatalysis. Pt catalysts promoted by certain metal oxides show enhanced methanol electro-oxidation activity and CO tolerance behavior. In this paper we summarize the recent progress from our laboratory which explored the possibility of developing Pt–MoO3/C and Pt–Nb2O5/C electrocatalysts in acidic media, and Pt–V2O5/C electrocatalyst in alkaline media for direct electro-oxidation of methanol. The oxide electrocatalysts have been prepared by a fast and efficient method of loading the metal oxide on carbon black (Vulcan XC-72) employing an intermittent microwave heating (IMH) method. These materials are found to achieve higher activity and stability towards methanol electro-oxidation.  相似文献   

3.
甲醇电化学催化氧化机理研究进展   总被引:9,自引:0,他引:9  
甲醇催化氧化机理的研究对催化剂的开发具有重要的意义。本文概述了甲醇在铂表面催化氧化的反应机理;催化剂的中毒情况以及抗CO催化剂的研究进展,重点阐述了催化剂的结构和表面组成以及电极电势对催化活性的影响。目前的催化剂是不令人满意的.基础研究将有助于避免用纯经验的方法来寻求更为理想的催化剂。  相似文献   

4.
Carbon aerogels (CAs) were prepared by sol‐gel polycondensation of resorcinol and formaldehyde with BET surface area of 616 m2 g?1 and the average pore size of 9.8 nm. The prepared CAs were used as supports for Pt nanoparticles for methanol oxidation in alkaline media. In comparison with Pt supported on commercial Vulcan XC‐72R carbon (Pt/C) electrocatalysts, Pt supported on CAs (Pt/CAs) electrocatalysts exhibited higher peak current density and more negative onset potential toward methanol oxidation. The effects of different parameters such as NaOH concentration, methanol concentration, and scan rate on the methanol oxidation reaction were investigated in detail. The results showed that the Pt/CAs electrocatalysts had promising application for methanol oxidation in alkaline media.  相似文献   

5.
Russian Journal of Electrochemistry - Catalysts containing bimetallic PtCu-nanoparticles deposited onto carbonaceous and composite SnO2/C supports are prepared by liquid-phase borohydride...  相似文献   

6.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   

7.
Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt−Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.  相似文献   

8.
甲烷光催化氧化制甲醇研究进展   总被引:2,自引:0,他引:2  
随着经济的发展,人们对能源的需求量日益增加.目前,世界上石油资源储量有限,而天然气是非常丰富的石油化工燃料资源,储量很大.现已探明的世界天然气储量为142.1万亿立方米,其能量相当于9143亿桶原油,远景储量为250~350万亿立方米.天然气资源与液体石油资源相比,其储量  相似文献   

9.
唐志诚  吕功煊 《化学进展》2007,19(9):1301-1312
直接甲醇燃料电池作为未来清洁的动力能源,由于具有下列优点:操作温度低(<100℃)、燃料易储存和运输、能量效率高、污染低和燃料启动快而受到人们广泛的关注。阳极电催化剂是直接甲醇燃料电池最重要的组成部分。本文综述了近三年来直接甲醇燃料电池阳极电催化剂最新的研究进展,主要对催化剂制备方法、新型碳载体材料、催化剂类型作了详细的评述,展望了未来甲醇电催化氧化催化剂的发展,指出了电催化剂面临的问题。  相似文献   

10.
Exploiting high‐performance and inexpensive electrocatalysts for methanol electro‐oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus‐like PdCu nanocrystals (NCs) via a one‐step and template‐free method. The echinus‐like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites. Owing to the novel nanoarchitecture and electronic effect of the PdCu alloy, the echinus‐like PdCu NCs display high electrocatalytic performance toward methanol oxidation reaction in an alkaline medium. The mass activity of echinus‐like PdCu NCs is 1202.1 mA mgPd?1, which is 3.7 times that of Pd/C catalysts. In addition, the echinus‐like structure, as a kind of three‐dimensional self‐supported nanoarchitecture, endows PdCu NCs with significantly enhanced stability and durability. Hence, the echinus‐like PdCu NCs hold prospect of being employed as electrocatalysts for direct alcohol fuel cells.  相似文献   

11.
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a “holy grail” reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted.  相似文献   

12.
王克  汪啸  宋术岩 《应用化学》2022,39(4):540-558
甲烷合成甲醇的方法包括间接法和直接催化氧化(DMTM)法,但是间接法对设备要求高,且甲烷转化率与甲醇选择性均不理想,DMTM法可通过一步反应高选择性制备甲醇,有巨大的应用潜力。对于甲烷DMTM法合成甲醇,均相催化体系通常需要特殊反应介质与贵金属催化剂相结合,虽然反应效率高,但对反应设备有腐蚀性,产物不易分离,应用前景差。液相-异相催化一般使用H_(2)O_(2)作为氧化剂,Au、Pd、Fe和Cu等金属元素作为催化剂主要活性组分,·OH是主要的氧化活性物,可在低温下实现甲烷的活化氧化。因此,异相催化体系是目前研究的主流。气相-异相催化主要使用O_(2)和N_(2)O为氧化剂,前者氧化性更强,后者对于产品选择性更好,此外,厌氧体系中H_(2)O也可直接作为氧供体,常用Cu、Fe、Rh等元素作为催化剂。沸石分子筛是使用最广泛的载体,金属氧化物、金属有机骨架化合物(MOFs)和石墨烯也均有涉及,多金属协同催化已经取得了很好的效果。本文主要总结与概述了热催化甲烷直接催化氧化制备甲醇的近年相关研究,并对今后的研究方向做出了展望。  相似文献   

13.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   

14.
Engineering the size, composition, and morphology of platinum‐based nanomaterials can provide a great opportunity to improve the utilization efficiency of electrocatalysts and reinforce their electrochemical performances. Herein, three‐dimensional platinum–palladium hollow nanospheres with a dendritic shell (PtPd‐HNSs) are successfully fabricated through a facile and economic route, during which SiO2 microspheres act as the hard template for the globular cavity, whereas the triblock copolymer F127 contributes to the formation of the dendritic shell. In contrast with platinum hollow nanospheres (Pt‐HNSs) and commercial platinum on carbon (Pt/C) catalyst, the novel architecture shows a remarkable activity and durability toward the methanol oxidation reaction (MOR) owing to the coupled merits of bimetallic nanodendrites and a hollow interior. As a proof of concept, this strategy is also extended to trimetallic gold–palladium–platinum hollow nanospheres (AuPdPt‐HNSs), which paves the way towards the controlled synthesis of other bi‐ or multimetallic platinum‐based hollow electrocatalysts.  相似文献   

15.
在全球能源结构“清洁化”转型的背景下,可再生能源的开发与利用能够有效解决能源危机与环境问题,符合我国的可持续发展路线。能源转换与储存技术贯穿着循环能源技术的各个环节,是新型能源框架的核心支撑。 水氧化反应是众多能源体系(例如, 水裂解反应、 二氧化碳还原反应、 氮还原反应和金属-空气电池)的重要半反应, 但其动力学缓慢, 严重限制了设备的能源效率, 阻碍了相应技术的广泛应用。因此, 亟需开发具有低成本、 高活性、 强稳定性的水氧化电催化剂以降低反应能垒,进而推动能源转换与存储设备的工业化发展。钙钛矿型材料的晶体结构包容性强, 元素组成涵盖广泛, 具有丰富而独特的电子特性, 易于实现表面化学与电子结构的精准调控, 因此被公认为理想的催化材料设计平台。本文综述了钙钛矿型水氧化电催化剂的最新研究进展。首先介绍了钙钛矿型材料的晶体结构和电子特性,归纳了制备钙钛矿型氧化物的代表性的合成策略。通过讨论近期钙钛矿型水氧化电催化剂在酸性和碱性介质中的研究进展, 强调了钙钛矿型电催化剂结构与催化性能间的构效关系。 最后, 我们总结了钙钛矿型水氧化电催化剂在实际应用中面临的挑战与机遇, 提出了相应的建议与解决方案, 期望能使读者更清晰地认识到该领域的未来发展方向。  相似文献   

16.
Direct alcohol fuel cells (DAFCs) have attracted considerable research interest because of their potential application as alternative power sources for automotive systems and portable electronics. Pd-based catalysts represent one of the most popular catalysts for DAFCs due to their excellent electrocatalytic activities in alkaline electrolytes. Thus, it is of great importance to understand the structure-activity relationship of Pd electrocatalysts for alcohol electrocatalysis. Recently, size- and shape- controlled Pd nanocrystals have been successfully synthesized and subsequently used to study the size and shape effects of Pd electrocatalysts on alcohol electrocatalysis, in which the Pd (100) facet exhibited higher electrocatalytic oxidation activity for small alcohol molecules than the Pd (111) and (110) facets. Although it is well known that capping ligands, which are widely used in wet chemistry for the size- and shape-controlled synthesis of metal nanocrystals, likely chemisorb onto the surfaces of the resulting metal nanocrystals and influence their surface structure and surface-mediated properties, such as catalysis, this issue was not considered in previous studies of Pd nanocrystal electrocatalysts for electrocatalytic oxidation of small alcohol molecules. In this study, we prepared polyvinylpyrrolidone (PVP)-capped Pd nanocrystals with different morphologies and sizes and comparatively studied their electrocatalytic activities for methanol and ethanol oxidation in alkaline solutions. The chemisorbed PVP molecules transferred charge to the Pd nanocrystals, and the finer Pd nanocrystals had a higher coverage of chemisorbed PVP, and thus exposed fewer accessible surface sites, experienced more extensive PVP-to-Pd charge transfer, and were more negatively charged. The intrinsic electrocatalytic activity, represented by the electrochemical surface area (ECSA)-normalized electrocatalytic activity, of Pd nanocubes with exposed (100) facets increases with the particle size, indicating that the more negatively-charged Pd surface is less electrocatalytically active. The Pd nanocubes with average sizes between 12 and 19 nm are intrinsically more electrocatalytically active than commercial Pd black electrocatalysts, while the activity of Pd nanocubes with an averages size of 8 nm is less. This suggests that the enhancement effect of the exposed (100) facets surpasses the deteriorative effect of the negatively charged Pd surface for the Pd nanocubes with average sizes between 12 and 19 nm, whereas the deteriorative effect of the negatively charged Pd surface surpasses the enhancement effect of the exposed (100) facets for the Pd nanocubes with average sizes of 8 nm due to the extensive PVP-to-Pd charge transfer. Moreover, the Pd nanocubes with average sizes of 8 nm exhibit similar intrinsic electrocatalytic activity to the Pd nanooctahedra with (111) facets exposed and average sizes of 7 nm, indicating that the electronic structure of Pd electrocatalysts plays a more important role in influencing the electrocatalytic activity than the exposed facet. Since the chemisorbed PVP molecules block the surface sites on Pd nanocrystals that are accessible to the reactants, all Pd nanocrystals exhibit lower mass-normalized electrocatalytic activity than the Pd black electrocatalysts, and the mass-normalized electrocatalytic activity increases with the ECSA. These results clearly demonstrate that the size- and shape-dependent electrocatalytic activity of Pd nanocrystals capped with PVP for methanol and ethanol oxidation should be attributed to both the exposed facets of the Pd nanocrystals and the size-dependent electronic structures of the Pd nanocrystals resulting from the size-dependent PVP coverage and PVP-to-Pd charge transfer. Therefore, capping ligands on capped metal nanocrystals inevitably influence their surface structures and surface-mediated properties, which must be considered for a comprehensive understanding of the structure-activity relationship of capped metal nanocrystals.  相似文献   

17.
直接甲醇燃料电池阳极催化剂研究进展   总被引:5,自引:0,他引:5  
 甲醇氧化电催化剂是决定直接甲醇燃料电池性能、寿命和成本的关键材料之一. 近年来人们从提高阳极催化剂活性和降低催化剂成本两个方面出发进行了大量的研究, 有力推动了直接甲醇燃料电池的发展. 在简要介绍电催化剂上甲醇氧化反应机理的基础上, 综述了近年来直接甲醇燃料电池阳极催化剂的研究进展, 从铂基催化剂、非铂基催化剂和催化剂载体三个方面进行了详细的介绍 (附有 58 篇参考文献), 并展望了甲醇电催化剂的发展趋势  相似文献   

18.
Electrochemical water splitting by renewable energy resources is an efficient and green approach for hydrogen gas production. However, the anodic oxygen evolution reaction (OER) largely impedes the industrial application due to its sluggish four-electron-transition kinetics. Although various materials have been developed to accelerate the OER rate, still some issues should be addressed to meet the industrial demand: (i) considerable 200–300 mV overpotential as extra onset energy input, (ii) limited survival and performance in acidic electrolyte for the majority of oxide/hydroxide composite materials, (iii) unsatisfying long-term durability and (iv) the need for facile and scalable preparation methods. Here, we emphasize on multi-metallic composites with enhanced OER activity based on both precious and nonprecious elements that outperform the unary and binary composites. The regulation effect from multi-metal incorporation is also summarized systematically: (i) introducing foreign metal atoms to the host material boosts the physical properties such as conductivity, surface area, defect density, morphology, wettability, etc., (ii) metal doping can synergistically regulate the electronic features of the host material, e. g. oxygen vacancy, eg orbit filling, coordinative number and covalence state, which can optimize the absorption/desorption energy of the M−O intermediate, (iii) chaotic impact from the added atoms twists the catalyst lattice into a more aggressive and higher energy state, which is more feasible to transform to an active intermediate with lower required energy supply. This review aims to provide a practical approach to further improve the OER performance via multi-metallic-based catalysts.  相似文献   

19.
以NaBH4为还原剂,采用共还原法和分步还原法制备了粒径分布均匀的Pd/C和Pd-Co/C电催化剂.X射线衍射、透射电镜、电化学循环伏安和旋转厕盘电极等表征结果表明,与Pd/C电催化剂相比,两种方法制备的Pd-Co/C电催化剂的晶格常数明显缩小,其中分步还原法制备的电催化剂不仅具有良好的氧还原活性,而且表现了良好的耐甲醇性能.  相似文献   

20.
光电催化氧化甲醇电极   总被引:2,自引:0,他引:2  
直接甲醇燃料电池 (DMFC)可直接利用甲醇 ,无须中间转化装置 ,具有系统结构简单、体积能量密度高、燃料补充方便等优点 .从提高电流密度和稳定催化剂本征活性这两方面来看 ,DMFC需要解决的关键问题是使甲醇直接氧化的阳极材料 .近年来有关此类阳极材料的制备与催化性能的研究报道日益增多 [1,2 ] ,但都是单纯地从光催化或电催化的角度出发 .本文提出一种利用 Ti O2 为光催化剂 ,Pt- Ru为电催化剂 ,试图将光催化与电催化反应发生于一体 ,使甲醇能得到联合的催化氧化作用 ;同时为了能进一步增加Ti O2 的光催化氧化能力 ,改变 Ti O2 - n…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号