首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Silver nanoparticles (AgNPs) are widely used commercially due to their antimicrobial effects. Little is known about the effect of AgNPs on neural transmission and pain response. The aim of this study was to assess the anti-nociceptive activity of AgNPs. AgNPs were prepared at 16 ug/mL, white albino rats were injected with various doses of AgNPs, and challenged using a hot-plate test and paw withdrawal latency (PWL) was measured. The chronic constriction injury (CCI) model was utilized to evaluate the pedal withdrawal reflex and tail withdrawal reflex. An electrophysiological study was conducted utilizing colon longitudinal muscle strips. AgNPs increased the latency of PWL in a dose-dependent matter over the duration of 6 h. The paw withdrawal threshold in animals with CCI significantly increased after AgNPs administration. In isolated colon longitudinal muscle strips, AgNPs significantly reduced the colonic migrating motor complexes (MMCs) and contraction. This action was completely reversed after removing the AgNPs and adding acetylcholine to the preparation. In this study, AgNPs showed significant anti-nociception properties. To our knowledge, this is the first report to describe this pharmacological action of AgNPs.  相似文献   

2.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

3.
Chemiluminescence of luminol catalyzed by silver nanoparticles   总被引:1,自引:0,他引:1  
Silver nanoparticles (AgNPs) are synthesized by chemical reduction method and characterized by UV-vis spectra, transmission electron microscopy, and high performance particle sizer. We have found that AgNPs could enhance the chemiluminescence (CL) intensity of luminol-H(2)O(2) system. In this reaction, luminol intermediate is generated under alkaline condition on the surface of AgNPs in luminol-H(2)O(2) system and enhances CL intensity. To validate the reaction mechanism, AgNPs are bound with thioglycolic acid (Ag-HSCH(2)COOH) and then joined to BSA protein (Ag-BSA). We investigate the CL intensity in the presence of Ag-HSCH(2)COOH or Ag-BSA comparing with that in the presence of AgNPs and conclude the catalytic reaction take place on the surface of AgNPs.  相似文献   

4.
The multiple sizing of silver nanoparticles (AgNPs) were synthesized from the miscible compound of ethylene glycol (EG), polyvinylpyrrolidone (PVP) and silver nitrate (AgNO3) via the solvothermal method. During the synthesis, the PVP-AgNO3 was contemplated as a paramount parameter. Using the simple method of solvothermal, the sizing of AgNPs was easily controlled in accord with the augmentation of PVP-AgNO3 at secured and moderate temperature. In regards to the sizing of AgNPs, the presence of minimum agglomeration, the absorption capability and chemical structures were highlighted through a series of verification includes ultraviolet–visible (UV–Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) analysis. The effectiveness of the synthesized AgNPs was further investigated and compared with the commercial AgNPs by incorporating the AgNPs into titanium dioxide (TiO2) semiconductor film-based dye-sensitized solar cells (DSSCs). Results signified that the spherical AgNPs with produced sizing within the range of 19.6 to 45.2 nm were greatly impacting by tunable quantities of PVP-AgNO3, which was validated in the forms of linear equations. A larger size promotes a slower nucleation rate that conduces agglomeration. In opposition to this, the smallest size of AgNPs develops a faster formation rate of Ag ions into AgNPs, inducing the deterrent of agglomeration in light of notable particle dispersion. The power conversion efficiency (PCE) contributed by the incorporation of synthesized AgNPs into TiO2 is also 41.2% higher than that of the commercial AgNPs-TiO2. This is because the synthesized AgNPs provides less agglomeration which led to a better surface plasmonic effect towards the nanoparticles.  相似文献   

5.
The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (−23.76 for Ep–AgNPs, −29.54 for Es–AgNPs and −20.72 for Et–AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.  相似文献   

6.
研究了纳米银(AgNPs)在氨基注入氧化铟锡(ITO)薄膜表面的吸附.通过氨基注入的疗法得到了氨基功能化的ITO表面(NH2/ITO),并将纳米银直接吸附在NH2/ITO上得到纳米银修饰NH2/ITO基体(AgNPs/NH2/ITO).使用傅里叶红外光谱、X射线光电子能谱、原子力显微镜、扫描电镜、紫外可见光谱和电化学方法对AgNPs/NH2/ITO制备过程进行了表征.结果显示纳米银可在NH2/ITO表面高密度地吸附,并且纳米银有良好的电化学活性.这种不借助于有机连接分子吸附纳米银的方法为制备纳米银修饰材料提供了新的选择.  相似文献   

7.
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) has been used to investigate the adsorption of methamphetamine hydrochloride (MA) on AgNPs surfaces characterized by the dispersion of AgNPs on agarose gel (AgNPs/Agar). The AgNPs/Agar was characterized by transmission electron microscopy (TEM) as being formed by AgNPs with a mean diameter of 13.5 nm. The AgNPs/Agar films presented a surface plasmon resonance absorption band centered at 421 nm. SERS spectra, excited at 632.8 nm, of MA adsorbed onto AgNPs/Agar films were recorded for MA concentrations down to 1.0 × 10−5 mol L-1. The results have also shown that MA adsorbs on the Ag surface forming ionic pairs with adsorbed chloride following a Frumkin adsorption isotherm with a ΔGads of −24 kJ mol-1 and a g parameter characteristic of attractive lateral interaction. The AgNPs/Agar SERS substrate was further evaluated for MA detection on latent fingerprints (LFP). The AgNPs/Agar films prove to be a suitable substrate for recording fingerprints contaminated with MA making possible the detection of ca. 190 μg of MA, before and after LFP development. The SERS signal of MA adsorbed onto AgNPs/Agar films remained stable for at least 180 days.  相似文献   

9.
The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum. These results confirm that biosynthesized AgNPs can significantly control these plant pathogens.  相似文献   

10.
Silver nanoparticles (AgNPs) are increasingly used in daily life for their antibacterial properties, but their low stability and high cytotoxicity hamper practical applications. In this work, sodium 1‐naphthalenesulfonate‐functionalized reduced graphene oxide (NA‐rGO) was used as a substrate for AgNPs to produce a AgNP‐NA‐rGO hybrid. This hybrid showed substantially higher antibacterial activity than polyvinyl pyrrolidone(PVP)‐stabilized AgNPs, and the AgNPs on NA‐rGO were more stable than the AgNPs on PVP, resulting in long‐term antibacterial effects. More importantly, this hybrid showed excellent water solubility and low cytotoxicity, suggesting the great potential application as sprayable reduced graphene oxide based antibacterial solutions.  相似文献   

11.
We report a facile, cost effective, and environmentally friendly green chemistry method for preparing silver nanoparticles (AgNPs) using Rubus crataegifolius bge (RCB) fruit extract. The amount of the fruit extract used was found to be important parameters in the growth of AgNPs. In this study, the effect of RCB fruit extract on the synthesis of AgNPs was studied using UV–Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and dynamic light scattering analyses were performed to characterize the RCB fruit extract-stabilized AgNPs. The formation of the AgNPs was confirmed by the color change of the reaction medium and the absorbance peak observed at 420 nm. The XRD analysis confirmed the face centered cubic structure of the AgNPs. The catalytic property of the as-synthesized AgNPs was analyzed for the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

12.
《中国化学会会志》2017,64(10):1164-1171
A green biogenic, nontoxic, high‐yielding synthetic method is introduced for the synthesis of silver nanoparticles (AgNPs) using ionic‐liquid‐based, microwave‐assisted extraction (ILMAE) from Polygonum minus . The aqueous ionic liquid (1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl)‐based plant extract was used as reducing agent to reduce silver ions to AgNPs. The synthesis of AgNPs was confirmed by UV–visible spectrophotometry. Fourier transforms infrared (FTIR) spectra showed that the plant bioactive compounds capped the AgNPs. The particle size and morphology of Ag NPs were characterized by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM), respectively. Elemental analysis was carried out by energy‐dispersive X‐ray (EDX) spectroscopy. Photodegradation studies showed that the AgNPs degraded 98% of methylene blue in 12 min.  相似文献   

13.
Nanobiotechnology is the intersection of nanotechnology and biology, where nano systems are applied to help study biological systems. There is a growing interest of researchers in the application of nanotechnology in improving the efficacy of photodynamic therapy. In this study, the antioxidant, photodynamic, anticancer, and antibacterial potential of plant extracts and silver nanoparticles (AgNPs) were investigated. In order to synthesize AgNPs, 10 g of dried powder of Tecoma stans and Narcissus tazetta was boiled in deionized water (100 ml) and mixed with aqueous solution of silver metals, resulting in the formation of AgNPs. The synthesized AgNPs were spherical having size in a range of 15–100 nm. The application of extract (50 µl) and AgNPs to rhabdomyosarcoma cell line showed a decreased cell viability (%). Photodynamic study revealed an improvement in photosensitizer efficacy on introducing AgNPs. Both plant extracts and AgNPs had significant effect against methicillin resistant Staphylococcus aureus (MRSA) as well as sensitive Staphylococcus aureus with minimum inhibitory concentration (MIC) values of AgNPs lower (32–256 µg/ml) than the plant extracts. According to the current findings, these AgNPs have an enhancing effect on the photodynamic cytotoxic potential of plant extracts. Because of biological efficacy, these AgNPs may play a crucial role in determining therapeutic potential of Tecoma stans and Narcissus tazetta.  相似文献   

14.

The aim of the present work was to synthesize carrageenan coated silver nanoparticles (CA–AgNPs) using carrageenan as reducing and stabilizing agent. For this purpose, 10 mL of 0.35% (w/v) carrageenan solution was mixed with 10 mL AgNO3 solution at different concentrations (1, 5 and 10 mM), and the resulting mixture was stirred at 100 °C at high speed for 2 h. The formation of CA–AgNPs was proven with the surface plasmon peaks observed at approximately 420 nm. The sizes and zeta potentials of CA–AgNPs were determined by Zeta-Sizer. Negative zeta potentials of CA–AgNPs indicated that the obtained AgNPs were stable. With scanning electron microscope (SEM) and transmission electron microscope analysis, it was seen that CA–AgNPs have spherical structure. According to the energy dispersion spectrometer analysis based on SEM images, it was observed that the samples were elementally composed of carbon, oxygen, sulfur, potassium and silver. The chemical structures of CA–AgNPs were determined by Fourier transform infrared spectroscopy, and it was proved that the carbonyl and OH groups of carrageenan were involved in formation and stabilizing of AgNPs, respectively. According to thermal gravimetric analysis, it has been observed that CA–AgNPs were thermally more stable than pure carrageenan. Antibacterial activity of CA–AgNPs against gram-positive and gram-negative bacteria was investigated with agar well diffusion and liquid test. It has been observed that CA–AgNPs synthesized with 1 mM AgNO3 did not have an antibacterial activity on Escherichia coli and Staphylococcus aureus. Inhibition zones of varying diameters were observed in the 5 mM and 10 mM S-AgNPs groups. The synthesized CA–AgNPs (5 and 10 mM) have the capacity to be used in wound dressing materials or topical agents applied to burns and wounds due to their antibacterial effects and stability.

  相似文献   

15.
Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field.  相似文献   

16.
To explore the mechanisms in Surface‐enhanced Raman Scattering (SERS) measurements, silver nanoparticles (AgNPs) were first prepared by a silver mirror reaction to form different particle sizes and different distributions on glass substrates. After the resulting surfaces were probed with molecules of p‐Amino‐thiophenol (pATP), p‐Nitrothiophenol (pNTP), and p‐Mercaptobenzoic acid (pMBA) individually, the substrates were placed into reaction solutions to grow additional AgNPs. In this way, probe molecules could be trapped between two nanoparticles, possibly having the so‐called “hot spot” effect. To examine the variations of morphologies of AgNPs in each of the steps, the substrates were examined by field‐emission scanning electron microscope (FE‐SEM). The morphologies also were correlated with the SERS signals. Two bands in the SERS spectra of probe molecules were selected as indications of the enhancements from electromagnetic (EM) effect and charge‐transfer (CT). Results indicate that the SERS signals from the EM effect were increased ca. 5 times after growing additional AgNPs on the molecule‐modified AgNPs substrates. The SERS signals from CT effect were increased two orders of magnitude after growing additional AgNPs. The increase of enhancement for molecules between AgNPs was caused mostly by CT effect. Based on the effect of particle size and distribution of the AgNPs, the EM effect was strongly influenced by the particle size of the AgNPs, while the CT effect was less sensitive to the variation of the morphologies of the AgNPs.  相似文献   

17.
In this study, to use a stabilized carrier, silver nanoparticles (AgNPs) were used as carriers and electron acceptors were added to activate the surface of AgNPs as olefin carriers. In addition, poly(ether-block-amide) (PEBAX), consisting of polyamide (hard segments) and polyether (soft segments), was investigated for the correlation of the between-segments ratio related to the stability of AgNPs and separation performance. As a result, contrary to the expectation that high permeance would be observed in PEBAX-1657/AgNPs/7,7,8,8-tetracyanoquinodimethane (TCNQ) membrane, which had a higher ratio of polyether soft segment, the PEBAX-5513/AgNPs/TCNQ membrane, which had a relatively high proportion of polyamide, showed a higher permeance without difference in selectivity. These unexpected data were attributable to the fact that the relatively abundant amount of PA groups in PEBAX-5513 was able to stabilize and positively polarize the surface of AgNPs, resulting in the stabilized and high performance of olefin separation.  相似文献   

18.
A chitosan-based electrode filled with silver nanoparticles (AgNPs) and glucose oxidase (GOD) was used as an enzyme electrode to investigate the effect of aging process of AgNPs on the GOD activity. Freshly prepared AgNPs inhibit the GOD activity, however, the inhibitory effect decreased with the increase of aging time. After aged for a period of time, AgNPs showed enhancement effect on the GOD activity. The effect of aging was studied by the measurements of Ag+ ions concentration, zeta (ζ) potential and X-ray photoelectron spectroscopy (XPS). And the results indicated that the concentration of Ag+ ions in the silver sol decreased during the aging period (i.e. Ag+ ions converted to more inert silver metal Ag0). The effect of AgNPs on the GOD activity can be changed by controlling the aging time of AgNPs. This research provides a new and simple approach to mediate AgNPs property, which is of great value in potential application of AgNPs in biosensors and nanoscale devices.  相似文献   

19.
The principal objective of this work was to develop and demonstrate a new methodology for silver nanoparticle (AgNP) detection and characterization based on asymmetric-flow field flow fractionation (A4F) coupled on-line to multiple detectors and using stable isotopes of Ag. This analytical approach opens the door to address many relevant scientific challenges concerning the transport and fate of nanomaterials in natural systems. We show that A4F must be optimized in order to effectively fractionate AgNPs and larger colloidal Ag particles. With the optimized method one can accurately determine the size, stability and optical properties of AgNPs and their agglomerates under variable conditions. In this investigation, we couple A4F to optical absorbance (UV–vis spectrometer) and scattering detectors (static and dynamic) and to an inductively coupled plasma mass spectrometer. With this combination of detection modes it is possible to determine the mass isotopic signature of AgNPs as a function of their size and optical properties, providing specificity necessary for tracing and differentiating labeled AgNPs from their naturally occurring or anthropogenic analogs. The methodology was then applied to standard estuarine sediment by doping the suspension with a known quantity of isotopically enriched 109AgNPs stabilized by natural organic matter (standard humic and fulvic acids). The mass signature of the isotopically enriched AgNPs was recorded as a function of the measured particle size. We observed that AgNPs interact with different particulate components of the sediment, and also self-associate to form agglomerates in this model estuarine system. This work should have substantial ramifications for research concerning the environmental and biological fate of AgNPs.  相似文献   

20.
A facile approach for the synthesis of stable aqueous dispersion of silver nanoparticles (AgNPs) using glucose as the reducing agent in water/micelles system, in which cetyltrimethylammonium bromide (CTAB) was used as capping agent (stabilizer) is described. The evolution of plasmon band of AgNPs was monitored under different conditions such as (a) concentration of sodium hydroxide, (b) concentration of glucose, (c) concentration of silver nitrate (d) concentration of CTAB, and (e) reaction time. AgNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and FT-IR spectroscopy. The results revealed an easy and viable strategy for obtaining stable aqueous dispersion of AgNPs with well controlled shape and size below 30 nm in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号