首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABO3-type perovskite oxides(e.g.,LaCoO3)with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMnxCo1-xO3)can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMnxNiyCozO3(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm-2 is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm-2 and EDER@10 mA cm-2 is achieved as only 0.76 V by using the optimal LaMnxNiyCozO3(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO3(1:2:3)catalyst,which not only decreases the eg orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.  相似文献   

2.
The development of low-cost and highly efficient bifunctional electrocatalysts toward oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is of critical importance for clean energy devices such as fuel cells and metal-air batteries.Herein,a sophisticated na nostructure composed of CoS,Co and MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers(CoS/Co/MoC-N,SPCNFs) as a high-efficiency bifunctional electrocatalyst is designed and synthesized via an efficient multistep strategy.The as-prepared CoS/Co/MoC-N,S-PCNFs exhibit a positive half-wave potential(E_(1/2)) of0.871 V for ORR and a low overpotential of 289 mV at 10 mA/cm~2 for OER,outperforming the non-noble metal-based catalysts reported.Furthermore,the assembled Zn-air battery based on CoS/Co/MoC-N,SPCNFs delivers an excellent power density(169.1 mW/cm~2),a large specific capacity(819.3 mAh/g) and robust durability,demonstrating the great potential of the as-developed bifunctional electrocatalyst in practical applications.This work is expected to inspire the design of advanced bifunctional nonprecious metal-based electrocatalysts for energy storage.  相似文献   

3.
Design and synthesis of low-cost and efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Zn-air batteries are essential and challenging. We report a facile method to synthesize heterostructure carbon consisting of graphitic and amorphous carbon derived from the agricultural waste of red bean pods. The heterostructure carbon possesses a large surface area of 625.5 m2 g−1, showing ORR onset potential of 0.89 V vs. RHE and OER overpotential of 470 mV at 5 mA cm−2. Introducing hollow FeCo nanoparticles and nitrogen dopant improves the bifunctional catalytic activity of the carbon, delivering ORR onset potential of 0.93 V vs. RHE and OER overpotential of 360 mV. Electron energy-loss spectroscopy (EELS) O K-edge map suggests the presence of localized oxygen on the FeCo nanoparticles, suggesting the oxidation of the nanoparticles. Zn-air battery with these carbon-based catalysts exhibits a peak power density as high as 116.2 mW cm−2 and stable cycling performance over 210 discharge/charge cycles. This work contributes to the advancement of bifunctional oxygen electrocatalysts while converting agricultural waste into value-added material.  相似文献   

4.
Catalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) have garnered great attention as the key character in metal-air batteries.Herein,we developed a superior nonprecious bifunctional oxygen electrocatalyst,fabricated through spatial confinement of Fe/Fe_3 C nanocrystals in pyridinic N and Fe-Nx rich carbon nanotubes(Fe/Fe_3 C-N-CNTs).During ORR,the resultant electrocatalyst exhibits positive onset pote ntial of 1.0 V(vs.RHE),large half-wave potentials of 0.88 V(vs.RHE),which is more positive than Pt/C(0.98 V and 0.83 V,respectively).Remarkably,Fe/Fe_3 C-N-CNTs exhibits outstanding durability and great methanol tolerance,exceeding Pt/C and most reported nonprecious metal-based oxygen reduction electrocatalysts.Moreover,Fe/Fe_3 C-N-CNTs show a markedly low potential at j=10 mA/cm~2,small Tafel slopes and extremely high stability for OER.Impressively,the Fe/Fe_3 C-N-CNTs-based Zn-air batteries demonstrate high power density of 183 mW/cm~2 and robust charge/discharge stability.It is revealed that the spatial confinement effect can impede the aggregation and corrosion of Fe/Fe_3 C nanocrystals.Meanwhile,Fe/Fe_3 C and Fe-Nx play synergistic effect on boosting the ORR/OER activity,which provides an important guideline for construction of inexpensive nonprecious metal-carbon hybrid nanomaterials.  相似文献   

5.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

6.
Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.  相似文献   

7.
The high charge–discharge voltage gap is one of the main bottlenecks of zinc–air batteries (ZABs) because of the kinetically sluggish oxygen reduction/evolution reactions (ORR/OER) on the oxygen electrode side. Thus, an efficient bifunctional catalyst for ORR and OER is highly desired. Herein, honeycomb-like MnCo2O4.5 spheres were used as an efficient bifunctional electrocatalyst. It was demonstrated that both ORR and OER catalytic activity are promoted by MnIV-induced oxygen vacancy defects and multiple active sites. Importantly, the multivalent ions present in the material and its defect structure endow stable pseudocapacitance within the inactive region of ORR and OER; as a result, a low charge–discharge voltage gap (0.43 V at 10 mA cm−2) was achieved when it was employed in a flexible hybrid Zn-based battery. This mechanism provides unprecedented and valuable insights for the development of next-generation metal–air batteries.  相似文献   

8.
As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of—ideally—bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoIITP[CoIIIC]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm−2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec−1 combined with superior stability.  相似文献   

9.
利用碳黑(Vulcan XC-72R)中加入硫酸钴和吡啶(Py)作为催化剂前驱体,经溶剂分散热处理构建了一类新型的高效氧还原CoPy/C复合催化剂.并运用循环伏安法(CV)和旋转圆盘电极(RDE)技术研究了不同Co含量的CoPy/C催化剂在碱性介质中对氧还原的电催化活性.结果表明:Co的存在对氧的催化剂活性位的形成有重要影响,800℃下所制备的10%Co30%Py/C(质量分数)复合催化剂表现出最佳的氧还原催化活性.以其制备的气体扩散电极在3.0 mol·L-1KOH电解质溶液(O2气氛)中0.014 V(相对于标准氧电极(RHE))即可产生明显的氧还原电流.同40%Py/C相比,10%Co30%Py/C催化氧还原的起峰电位正移了71 mV,同时表现出明显的极限扩散电流.在-0.16 V时电流密度达到最大值,电流密度为1.0 mA·cm-2,半波电位在-0.07 V.透射电镜分析表明所制备的碳黑载吡啶钴(10%Co30%Py/C)催化剂平均粒径为20 nm.  相似文献   

10.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   

11.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

12.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface-mounted NiFe-MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm−2 at an overpotential of only ≈210 mV. It demonstrates operational long-term stability even at a high current density of 500 mA cm−2 and exhibits the so far narrowest “overpotential window” ΔEORR-OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

13.
Conjugated microporous polymers (CMPs) as emerging porous materials with diverse structures and tunable building‐units have attracted much attention in the electrochemical field. Herein, we designed phthalocyanine‐porphyrin‐based conjugated microporous polymers as precursors for fabrication of Co, Fe, N tri‐doped graphene composites towards oxygen reduction and evolution reaction (ORR/OER). As expected, the elements cobalt and iron are well dispersed in graphene carbon and interact with the nitrogen sites, thereby providing extra electrocatalytic active sites and enhancing its overall conductivity. Benefiting from its unique design and structure, the obtained catalyst affords a superior bifunctional catalytic activity with a positive onset potential of 0.957 V for ORR, and a low overpotential of 0.36 V for OER. More attractively, the CoFeNG is employed as an air cathode catalyst in Zn‐air batteries, showing a maximum current density of 215 mA cm?2 and good cycle stability for 20000 s. The rational design of phthalocyanine‐porphyrin‐based derivatives provides a feasible route for the construction of high‐performance ORR/OER catalysts.  相似文献   

14.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

15.
Transition metal oxides, especially perovskites, have been considered effective electrocatalysts for the oxygen evolution (OER) and oxygen reduction (ORR) reactions in an alkaline solution. Here, a series of lanthanum cobalt rhodium oxide perovskites with the chemical formula LaCo1-xRhxO3 (LCRO, 0.1 ≤ x ≤ 0.70) were prepared through the approach of solid-phase synthesis and their bifunctional electrocatalytic activity was assessed for both the OER and ORR. The crystallinity, morphology, surface, and electrocatalytic features of the LCRO were significantly correlated with the rhodium content. The LaCo0.7Rh0.3O3 electrocatalysts with x = 0.3 showed enhanced electrocatalytic bifunctional performance with a substantially lower OER/ORR onset potential of 1.38/0.73 V vs HRE, smaller Tafel slope (116/90 mV/dec), and low charge-transfer resistance, which is the most efficient catalyst among the other studied ratios and superior to the pristine lanthanum cobalt oxide benchmark electrocatalysts. The LaCo0.7Rh0.3O3 electrode exhibit good bifunctional electrocatalytic behavior and long-term durability with an OER and ORR onset potential gap (ΔE = EOER ? EORR) of only 0.65 V, which could be credited to the enriched oxygen vacancies, lattice expansion and the improved electrical conductivity upon the doping of larger size of Rh ions. The LaCo1-xRhxO3 catalysts are obtained from abundant materials that have the potential of highly-active bifunctional OER and ORR electrocatalysts.  相似文献   

16.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

17.
He  Qian  Meng  Yuying  Zhang  Hao  Zhang  Ying  Sun  Qingdi  Gan  Tao  Xiao  Huajian  He  Xiaohui  Ji  Hongbing 《中国科学:化学(英文版)》2020,63(6):810-817
Recently, nitrogen-doped porous carbon supported single atom catalysts(SACs) have become one of the most promising alternatives to precious metal catalysts in oxygen reduction reaction(ORR) due to their outstanding performance, especially those derived from porphyrin-based materials. However, most of them involve other metal residuals, which would cause the tedious pre-and/or post-treatment, even mislead the mechanistic investigations and active-site identification. Herein, we report a precursor-dilution strategy to synthesize Fe SACs through the Schiff-based reaction via co-polycondensation of amino-metalloporphyrin, followed by pyrolysis at high temperature. Systematic characterization results provide the compelling evidence of the dominant presence of atomically dispersed Fe-Nxspecies. Our catalyst shows superior ORR performance with positive half-wave potential(E_(1/2)=0.85 V vs. RHE) in alkaline condition and moderate activity(E_(1/2)=0.68 V vs. RHE) under the acidic condition, excellent methanol tolerance and good long-term stability. All the results indicate Fe SACs would be a promising candidate for replacing the precious Pt in metal-air batteries and fuel cells.  相似文献   

18.
《Journal of Energy Chemistry》2017,26(6):1223-1230
Noble-metal-free hydrogen/oxygen evolution reaction(HER/OER) electrocatalysts, especially bifunctional electrocatalysts, are essential for overall water splitting, but their performance is impeded by many factors like poor electrical conductivity. Herein, we fabricated cobalt phosphide(Co P) nanoparticles embedded in P and N co-doped carbon(PNC) matrix(Co P@PNC) to fully realize the high activity of Co P by maximizing its conductivity. Simply a carbonization coupled phosphidation approach was utilized where Co ions and organic ligands of Co-MOF were transferred into Co P and P and N co-doped carbon. The synthesized material shows an ideal electrical conductivity, excellent HER(overpotential of-84 m V and-120 m V @10 m A cm~(-2) in acidic and alkaline medias, respectively) and OER(overpotential of 330 m V@10 m A cm~(-2) in alkaline media) performances. Further, Co P@PNC acts as a superior catalyst for both anode and cathode to catalyze overall water splitting and only requires an voltage of 1.52 V to deliver a current density of 10 m A cm~(-2), superior to the noble-metal catalysts system(Pt/C//IrO_2) and the reported noble-metal-free bifunctional electrocatalysts.  相似文献   

19.
It is extremely desirable to explore high-efficient, affordable and robust oxygen electrocatalysts toward rechargeable Zn–air batteries (ZABs). A 3D porous nitrogen-doped graphene encapsulated metallic Ni3Fe alloy nanoparticles aerogel (Ni3Fe-GA1) was constructed through a facile hydrothermal assembly and calcination process. Benefiting from 3D porous configuration with great accessibility, high electrical conductivity, abundant active sites, optimal nitrogen content and strong electronic interactions at the Ni3Fe/N-doped graphene heterointerface, the obtained aerogel showed outstanding catalytic performance toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, it exhibited an overpotential of 239 mV to attain 10 mA cm−2 for OER, simultaneously providing a positive onset potential of 0.93 V within a half-wave potential of 0.8 V for ORR. Accordingly, when employed in the aqueous ZABs, Ni3Fe-GA1 achieved higher power density and superior reversibility than Pt/C−IrO2 catalyst, making it a potential candidate for rechargeable ZABs.  相似文献   

20.
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号