首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Liang Y  Hong M  Su W  Cao R  Zhang W 《Inorganic chemistry》2001,40(18):4574-4582
The hydrothermal reaction of Ln2O3 (Ln = Er, Gd, and Sm), pyridine-2,5-dicarboxylic acid (H2pydc), and Cu(II) reagents (CuO, Cu(OAc)2-2H2O, or CuCl2-2H2O) with a mole ratio of 1:2:4 resulted in the formation of six polymeric Cu(II)-Ln(III) complexes, [(Ln2Cu3(pydc)6(H2O)12)-4H2O]n (Ln = Er (1); Ln = Gd (2)), [(Ln4Cu2(pydc)8(H2O)12)-4H2O]n (Ln = Sm (3); Ln = Gd (4); Ln = Er (5)), and [(Gd2Cu2(pydc)4(H2O)8)-Cu(pydc)2-12H2O]n (6). 1 and 2 are isomorphous and crystallize in triclinic space group Ponebar. Compounds 3-5 are isomorphous and crystallize in monoclinic space group P2(1)/c. Compound 6 crystallizes in triclinic space group Ponebar. Complexes 1 and 2 have one-dimensional zigzag chain structures and compounds 3-5 display three-dimensional wavelike polymeric structures, while 6 has an infinite sandwich-type structure. The different structures of the complexes are induced by the different forms of Cu(II) reagents; the reactions of Cu(OAc)2-2H2O yield high Cu/Ln ratio products 1, 2, and 6, while the reactions of CuO or CuCl2-2H2O/2,2'-bipyridine results in low Cu/Ln ratio compounds 3-5. Temperature-dependent magnetic susceptibilities for 2, 4, and 5 were studied, and the thermal stabilities of complexes 2 and 4 were examined.  相似文献   

2.
Six novel 3D layer-pillared lanthanide-transition metal coordination polymers,LnCuX(IN)2(Ac)(H2O)(Ln = Tb,X = Br(1);Ln = Er,X = Cl(2)),[LnCuCl(IN)2(Ac)].H2O(Ln = Gd(3);Ln = Eu(4)),and [LnCu2Br2(IN)2(Ac)(H2O)].nH2O(Ln = Dy,n =0(5);Ln = Gd,n = 0.5(6))(IN = isonicotinate,Ac = acetate),have been obtained by linking Ln-organic layers and diverse Cu-complex pillars under hydrothermal conditions.1 and 2 are isostructural and formed by 2D Ln-IN-Ac layers and CuX(IN)2 pillars(X = Br(1),X= Cl(2));3 and 4 are isomorph...  相似文献   

3.
黄维垣  张龙庆 《化学学报》1988,46(3):234-238
本文合成了α'-三氟甲基-含氟β-二酮镧系螯合物Ln{CF3CF2[CF2OCF(CF3)]nCOCHCOC(CH3)3}3[n=1; Ln=Eu(1a), Pr(1b), Nd(1c),Sm(1d), Gd(1e), Tb(1f), Dy(1g), Er(1h). n=2; Ln=Eu(2a), Pr(2b), Nd(2c),Sm(2d), Gd(2e), Tb(2f), Dy(2g), Er(2h)], 并研究了它们的位移性能. 1a、1b、2a和2b在用作位移试剂时, 不仅具备Ln(fod)3(Ln=Eu, Pr)的所有优点, 而且还有另外两个优点: (1)在底物存在时, 试剂自身的叔丁基峰明显向高场迁移, 特别是在醇类化合物存在下, δ-Bu^t接近于0ppm, 因此, 1a和2a的t-Bu峰总是处于底物ω-甲基的高场, 不干扰图谱的解析. (2)1b和2b虽为镨类螯合物, 但与1a与2a一样, 都能得到非常清晰的一级图谱. c、f和g均使谱峰向高场迁移, 而h却使谱峰向低场迁移. c的位移能力略低于b. f、g和h的位移能力极强.  相似文献   

4.
Ernst etal[1 ] reported the synthesis and crystal structure of( 2 ,4 -C7H1 1 ) 3Nd in1 982and then,the crystal structure of( 2 ,4 -C7H1 1 ) 3Gd[2 ] was also determined.In the rareearth triscyclopentadienyl compounds,the Dy complex s structure is not in agreementwith the lanthanide contraction regularity,called“gadolinium break phenomenon”[3] .Inorder to study the reality of this phenomenon,we have determined the crystal structuresof( 2 ,4 -C7H1 1 ) 3Dy( 1 ) and( 2 ,4 -C7H1 1 ) 3Er( 2 ) …  相似文献   

5.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

6.
用镧系硝酸盐与1,6-双(1'-苯基-3'-甲基-5'-氧代吡唑-4'-基)-1,6-己二酮(1,H2L)和1,10-二氮杂菲(2, Phen)在乙醇-水溶液中, 于PH5-6时合成了12种新的固态配合物Ln2L3Phen2. 4H2O(Ln=Pr, Nd, Sm-Lu)。用元素分析、水份及配体分析、红外、紫外,质子核磁共振、荧光光谱和热分析鉴定了所有的配合物, 从而推测, 可能L是四啮配体,Phen是二啮配体。  相似文献   

7.
Zhang J  Zhou X  Cai R  Weng L 《Inorganic chemistry》2005,44(3):716-722
The direct reactions of (C5H5)2LnCl with LiN=C(NMe2)2 proceeded at room temperature in THF under pure nitrogen to yield the lanthanocene guanidinate complexes [(C5H5)2Ln(mu-eta1:eta2-N=C(NMe2)2)]2 (Ln = Gd (1), Er (2)). Treatment of phenyl isocyanate with complexes 1 and 2 results in monoinsertion of phenyl isocyanate into the Ln-N(mu-Gua) bond to yield the corresponding insertion products [(C5H5)2Ln(mu-eta1:eta2-OC(N=C(NMe2)2)NPh)]2 (Ln = Gd (3), Er (4)), presenting the first example of unsaturated organic small molecule insertion into the metal-guanidinate ligand bond. Further investigations indicate that N,N'-diisopropylcarbodiimide does not react with complexes 1 and 2 under the same conditions; however, it readily inserts into the lithium-guanidinate ligand bond of LiN=C(NMe2)2. As a synthon of the insertion product Li[(iPrN)2C(N=C(NMe2)2)], its reaction with (C5H5)2LnCl gives the novel organolanthanide complexes containing the guanidinoacetamidinate ligand, (C5H5)2Ln[(iPrN)2C(N=C(NMe2)2)] (Ln = Yb (5), Er (6), Dy (7)). All complexes were characterized by elemental analysis and spectroscopic properties. The structures of complexes 1, 3, 5 and 7 were determined through X-ray single-crystal diffraction analysis.  相似文献   

8.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

9.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

10.
Zhao XQ  Zhao B  Ma Y  Shi W  Cheng P  Jiang ZH  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(15):5832-5834
Two new coordination polymers {[Ln(2)(PDA)(6)Co(3)(H(2)O)(6)] x xH(2)O}(n) [Ln = Nd, x = 7 (1); Ln = Gd, x = 3.25 (2); H(2)PDA = pyridine-2,6-dicarboxylic acid] have been prepared under hydrothermal conditions with Ln(NO(3))(3) x 6H(2)O, CoO, and H(2)PDA in a molar ratio of 2:3:6. X-ray crystallographic analyses reveal that they crystallize in the hexagonal group P6/mcc and exhibit a nanotubular 3D framework. The adsorption experiment shows that 1 and 2 can adsorb radicals, which is proven by electron paramagnetic resonance spectra with the characteristic bands of the radicals at g = 2.006 and 2.005, respectively.  相似文献   

11.
An H  Han Z  Xu T 《Inorganic chemistry》2010,49(24):11403-11414
A family of three-dimensional (3D) architectures based on lanthanide-substituted polyoxometaloborate building blocks, [LnK(H(2)O)(12)][Ln(H(2)O)(6)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·20H(2)O (Ln = Ce 1, Nd 2), H(2)K(2)(H(2)O)(n)[(C(6)NO(2)H(5))Ln(H(2)O)(5)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·18H(2)O (Ln = Ce n = 8 3, Nd n = 9 4, C(6)NO(2)H(5) = pyridine-4-carboxylic acid), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, and are built up of lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with one-dimensional (1D) channels. The polyoxoanion [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions, constituted by two [BW(11)O(39)H](8-) polyoxoanions and two lanthanide cations. When pyridine-4-carboxylic acid ligand was added to the reaction system of 1, 2, compounds 3, 4 were obtained. Isostructural compounds 3 and 4 are constructed from the lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by the [Ln(C(6)NO(2)H(5))](3+) bridges to form a 3D channel framework. From the topological point of view, the 3D nets of compounds 1-4 are binodal with three- and six-connected nodes and exhibit a rutile topology. Compounds 1-4 represent the examples of 3D architectures based on lanthanide-substituted polyoxometalates. The magnetic properties of compounds 1-4 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K.  相似文献   

12.
A series of organic-inorganic hybrid compounds, K2H7[{Ln(PW11O39)2}{Cu2(bpy)2(mu-ox)}].xH2O (Ln = La, x approximately = 18 (1); Ln = Pr, x approximately = 18(2); Ln = Eu, x approximately = 16(3); Ln = Gd, x approximately 22(4); Ln = Yb, x approximately = 19 (5); bpy = 2,2'-bipyridine and ox = oxalate), have been isolated by the conventional solution method. Single-crystal X-ray diffraction studies reveal that compounds 1-5 are isomorphic and consist of one-dimensional chains, which are constructed by alternating bis(undecatungstophosphate) lanthanates [Ln(PW11O39)2](11-) and dinuclear copper(II)-oxalate complexes [Cu2(bpy)2(mu-ox)]2+.pi-pi interactions of the bpy ligands from adjacent chains lead to their three-dimensional structures. An analogue of potassium K2H9[{K(PW11O39)2}{Cu2(bpy)2(mu-ox)}1].approximately 20.5H2O(6) has also been obtained. The syntheses and structures of these compounds are reported here. Magnetic properties of 1, 2 and 3 are discussed as well. Attempts to crystallize similar compounds containing Co(II) and Ni(II) were unsuccessful.  相似文献   

13.
Two series of novel complexes, [Ln(dca)(2)(Phen)(2)(H(2)O)(3)](dca).(phen) (Ln = Pr (1), Gd (2), and Sm (3), dca = N(CN)(-), phen = 1,10-phenanthroline) and [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n), (Ln = Gd (4), Sm (5), and La (6), 2,2'-bipy = 2,2'-bipydine), have been synthesized and structurally characterized by X-ray crystallography. The crystal structures of the first series (1-3) are isomorphous and consist of discrete [Ln(dca)(2)(Phen)(2)(H(2)O)(3)]+ cations, dca anions, and lattice phen molecules; whereas the structures of the second series (4-6) are characterized by infinite chains [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n). The Ln(III) atoms in all complexes are nine-coordinated and form a distorted tricapped trigonal prism environment. The three-dimensional frameworks of 1-6 are constructed by intermolecular hydrogen bond interactions. Variable-temperature magnetic susceptibility measurements for complexes 1, 2, 4, and 5 indicate a Curie-Weiss paramagnetic behavior over 5-300 K.  相似文献   

14.
Two three-dimensional 2p-3d-4f heterometallic frameworks featuring a nanosized Ln(6)Cu(24)Na(12) (Ln = Gd, Dy) cluster as a node have been obtained under microwave irradiation conditions through the reaction of H(2)ANMA (H(2)ANMA = L-alanine-N-monoacetic acid), Cu(NO(3))(2), and Ln(NO(3))(3) (Ln = Gd for 1, Dy for 2) with NaOH in deionized water. Investigations on the magnetic properties show that 1 exhibits ferrimagnetic behavior. The electrical conductivity measurements reveal that 1 behaves as a proton conductor.  相似文献   

15.
Zhang X  Wang D  Dou J  Yan S  Yao X  Jiang J 《Inorganic chemistry》2006,45(26):10629-10635
A series of 10 novel polyoxometalate (W/Mo) compounds connected via a trivalent lanthanide cation bridge, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}.n(H2O) (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu; M = W or W/Mo) (1-10), were designed and synthesized on the basis of the abduction of Al3+ in aqueous solution. X-ray diffraction analyses reveal that the structures of complexes 1-10 are three-dimensional frameworks assembled from the arrangement of H2M12O42(10-) (named paradodecmetalate-B) and Ln(H2O)53+ with two planes, which are constructed via the unification of H2M12O42(10-) and Ln(H2O)53+, along the [100] and [001] directions. Magnetic measurements reveal the paramagnetic properties and a strong ferromagnetic coupling between the two nearest-neighboring lanthanide cations, Ln3+ (Ln = Dy, Er), within the circle for compounds 2 and 4-9.  相似文献   

16.
[Ln[N(SiMe3)2]2(THF)2](Ln = Sm, Yb) reacts with 1 equiv. of carbon-bridged biphenols, 2,2'-methylene-bis(6-tert-butyl-4-methylphenol)(L1H2) or 2,2'-ethylidene-bis(4,6-di-tert-butylphenol)(L2H2), in toluene to give the novel aryloxide lanthanide(II) complexes [[LnL1(THF)n]2](Ln = Sm, n = 3 (1); Ln = Yb, n = 2 (2)) and [[LnL2(THF)3]2](Ln = Sm (5); Ln = Yb (6)) in quantitative yield, respectively. Addition of 2 equiv. of hexamethylphosphoric triamide (HMPA) to a tetrahydrofuran (THF) solution of 1, 2 and 5 affords the corresponding HMPA-coordinated complexes, [[LnL1(THF)m(HMPA)n]2(THF)y](Ln = Sm, n = 2, m = 0, y = 2 (3); Ln = Yb, m = 1, n = 1, y = 6 (4)) and [[SmL2(HMPA)2]2](7) in excellent yields. The single-crystal structural analyses of 3, 4 and 7 revealed that these aryloxide lanthanide(II) complexes are dimeric with two Ln-O bridges. The coordination geometry of each lanthanide metal can be best described as a distorted trigonal bipyramid. Complexes 1-3, 5 and 7 can catalyze the ring-opening polymerization of epsilon-caprolactone (epsilon-CL), and 1-3, along with 5 show moderate activity for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) and the copolymerization of epsilon-CL and DTC to give random copolymers with high molecular weights and relatively narrow molecular weight distributions..  相似文献   

17.
Zhang H  Duan L  Lan Y  Wang E  Hu C 《Inorganic chemistry》2003,42(24):8053-8058
Three new compounds [Ln(NMP)(4)(H(2)O)(4)][H(x)()GeMo(12)O(40)].2NMP.3H(2)O (Ln = Ce(IV) (1), Pr(IV) (2), x = 0; Ln = Nd(III) (3), x = 1; NMP = N-methyl-2-pyrrolidone) have been prepared in aqueous solution and characterized by elemental analyses, IR, UV-vis, and TG analyses. The single crystal X-ray diffraction shows that all three compounds are isostructural. In their structures, an interesting two-dimensional supramolecular network is constructed by the [GeMo(12)O(40)](4)(-) anion and [Ln(NMP)(4)(H(2)O)(4)](3+/4+) cation building blocks via hydrogen-bonding interactions, exhibiting the porous structure. Upon irradiation with UV light, the crystals of 1-3 show photochromic behavior.  相似文献   

18.
Hydrothermal reactions of the lanthanide chlorides with MeN(CH2CO2H)(CH2PO3H2), (H3L1) (or Me2NCH2PO3H2, H2L2) and sodium oxalate lead to seven new lanthanide oxalate phosphonate hybrids with three types of 3D network structures, namely, [Ln(C2O4){MeNH(CH2CO2)(CH2PO3H)}]0.5 H2O (Ln=Nd: 1; Eu: 2; Gd: 3), [Ln4(C2O4)5(Me2NHCH2PO3)2(H2O)4]2 H2O (Ln=La: 4, Nd: 5), [Ln3(C2O4)4(Me2NHCH2PO3)(H2O)6]6 H2O (Gd: 6, Er: 7). Their structures have been established by X-ray single-crystal diffraction. Complexes 1-3 are isostructural and feature a 3D network formed by the interconnection of 3D network of {Ln(H2L1)}2+ with 1D chains of {Ln(C2O4)}+. Complexes 4 and 5 are isostructural and feature a complex 3D network built from 3D network of lanthanide oxalate and {Ln4(HL2)2} units. The isostructural 6 and 7 form another type of 3D network composed of porous lanthanide-oxalate network inserted by 1D chains of lanthanide-oxalate phosphonate. Compounds 1, 5 and 7 are luminescent materials in the near IR region. Compounds 3 and 6 exhibit a broad blue fluorescent emission band at 451 and 467 nm, respectively. Compound 2 displays very strong and sharp emission bands at 592, 616 and 699 nm with a long luminescent lifetime of 1.13 ms.  相似文献   

19.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

20.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号