首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the configurations of twisted elastic rods under applied end loads and clamped boundary conditions. We classify all the possible equilibrium states of inextensible, unshearable, isotropic, uniform and naturally straight and prismatic rods. We show that all solutions of the clamped boundary value problem exhibit a π-flip symmetry. The Kirchhoff equations which describe the equilibria of these rods are integrated in a formal way which enable us to describe the boundary conditions in terms of 2 closed form equations involving 4 free parameters. We show that the flip symmetry property is equivalent to a reversibility property of the solutions of the Kirchhoff differential equations. We sort these solutions according to their period in the phase plane. We show how planar untwisted configurations as well as circularly closed configurations play an important role in the classification. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schrödinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.  相似文献   

3.
The Stroh formalism is essentially a spatial Hamiltonian formulation and has been recognized to be a powerful tool for solving elasticity problems involving generally anisotropic elastic materials for which conventional methods developed for isotropic materials become intractable. In this paper we develop the Stroh/Hamiltonian formulation for a generally constrained and prestressed elastic material. We derive the corresponding integral representation for the surface-impedance tensor and explain how it can be used, together with a matrix Riccati equation, to calculate the surface-wave speed. The proposed algorithm can deal with any form of constraint, pre-stress, and direction of wave propagation. As an illustration, previously known results are reproduced for surface waves in a pre-stressed incompressible elastic material and an unstressed inextensible fibre-reinforced composite, and an additional example is included analyzing the effects of pre-stress upon surface waves in an inextensible material.  相似文献   

4.
Hamiltonian evolution equations which are equivariant with respect to the action of a Lie group are models for physical phenomena such as oceanographic flows, optical fibres and atmospheric flows, and such systems often have a wide variety of solitary-wave or front solutions. In this paper, we present a new symplectic framework for analysing the spectral problem associated with the linearization about such solitary waves and fronts. At the heart of the analysis is a multi-symplectic formulation of Hamiltonian partial differential equations where a distinct symplectic structure is assigned for the time and space directions, with a third symplectic structure – with two-form denoted by Ω– associated with a coordinate frame moving at the speed of the wave. This leads to a geometric decomposition and symplectification of the Evans function formulation for the linearization about solitary waves and fronts. We introduce the concept of the symplectic Evans matrix, a matrix consisting of restricted Ω-symplectic forms. By applying Hodge duality to the exterior algebra formulation of the Evans function, we find that the zeros of the Evans function correspond to zeros of the determinant of the symplectic Evans matrix. Based on this formulation, we prove several new properties of the Evans function. Restricting the spectral parameter λ to the real axis, we obtain rigorous results on the derivatives of the Evans function near the origin, based solely on the abstract geometry of the equations, and results for the large |λ| behaviour which use primarily the symplectic structure, but also extend to the non-symplectic case. The Lie group symmetry affects the Evans function by generating zero eigenvalues of large multiplicity in the so-called systems at infinity. We present a new geometric theory which describes precisely how these zero eigenvalues behave under perturbation. By combining all these results, a new rigorous sufficient condition for instability of solitary waves and fronts is obtained. The theory applies to a large class of solitary waves and fronts including waves which are bi-asymptotic to a nonconstant manifold of states as $|x|$ tends to infinity. To illustrate the theory, it is applied to three examples: a Boussinesq model from oceanography, a class of nonlinear Schr?dinger equations from optics and a nonlinear Klein-Gordon equation from atmospheric dynamics. Accepted August 7, 2000 ?Published online January 22, 2001  相似文献   

5.
It is demonstrated that a uniform and hyperelastic, but otherwise arbitrary, nonlinear Cosserat rod subject to appropriate end loadings has equilibria whose center lines form two-parameter families of helices. The absolute energy minimizer that arises in the absence of any end loading is a helical equilibrium by the assumption of uniformity, but more generally the helical equilibria arise for non-vanishing end loads. For inextensible, unshearable rods the two parameters correspond to arbitrary values of the curvature and torsion of the helix. For non-isotropic rods, each member of the two-dimensional family of helical center lines has at least two possible equilibrium orientations of the director frame. The possible orientations are characterized by a pair of finite-dimensional, dual variational principles involving pointwise values of the strain-energy density and its conjugate function. For isotropic rods, the characterization of possible equilibrium configurations degenerates, and in place of a discrete number of two-parameter families of helical equilibria, typically a single four-parameter family arises. The four continuous parameters correspond to the two of the helical center lines, a one-parameter family of possible angular phases, and a one-parameter family of imposed excess twists. Mathematics Subject Classifications (2000) 74K10.  相似文献   

6.
The stability of an inextensible unshearable elastic rod with quadratic strain energy density subject to end loads is considered. We study the second variation of the corresponding rod-energy, making a distinction between in-plane and out-of-plane perturbations and isotropic and anisotropic cross-sections, respectively. In all cases, we demonstrate that the naturally straight state is a local energy minimizer in parameter regimes specified by material constants. These stability results are also accompanied by instability results in parameter regimes defined in terms of material constants.  相似文献   

7.
Accurate mechanical models of elastic beams undergoing large in-plane motions are discussed theoretically and experimentally. Employing the geometrically exact theory of rods with appropriate kinematic assumptions and asymptotic arguments, two approximate models are obtained—a relaxed model and its constrained version—that describe extensional and bending motions and neglect shear deformations. These models are shown to be suitable to predict, via an asymptotic approach, closed-form nonlinear motions of beams with general boundary conditions and, in particular, with boundary conditions that longitudinally constrain the motions. On the other hand, for axially unrestrained or weakly restrained beams, an inextensible and unshearable model is presented that describes bending motions only. The perturbations about the reference configuration up to third order are consistently derived for all beam models. Closed-form solutions of the responses to primary-resonance excitations are obtained via an asymptotic treatment of the governing equations of motion for two different beam configurations; namely, hinged–hinged (axially restrained) and simply supported (axially unrestrained) beams. In particular, considering the present theory and the existing theories, variations of the frequency–response curves with the beam slenderness or the relative boundary mass are investigated for the lowest modes. The fidelity of the proposed nonlinear models is ascertained comparing the theoretically obtained frequency–response curves of the first mode with those experimentally obtained.  相似文献   

8.
The problem of the existence and dynamical stability of solitary wave solutions to a fifth-order evolution equation, generalizing the well-known Korteweg-de Vries equation, is treated. The theoretical framework of the paper is largely based on a recently developed version of positive operator theory in Fréchet spaces (which is used for the existence proof) and the theory of orbital stability for Hamiltonian systems with translationally invariant Hamiltonians. The validity of sufficient conditions for stability are established. The shape of solitary waves under analysis are determined by a numerical solution of the boundary-value problem followed by a correction using the Picard method of 4–12 orders of accuracy.  相似文献   

9.
朱位秋  黄志龙 《力学进展》2000,30(4):481-494
近几年中,利用Hamilton系统的可积性与共振性概念及Poisson括号性质等,提出了高斯白噪声激励下多自由度非线性随机系统的精确平稳解的泛函构造与求解方法,并在此基础上提出了等效非线性系统法,提出了拟Hamilton系统的随机平均法,并在该法基础上研究了拟Hamilton系统随机稳定性、随机分岔、可靠性及最优非线性随机控制,从而基本上形成了一个非线性随机动力学与控制的Hamilton理论框架.本文简要介绍了这方面的进展.  相似文献   

10.
Nonlinear amplitude equations for the near-threshold behavior of twisted extensible elastic rods under tension with inertial and dissipative dynamics are derived. In the inertial case localized solutions to the amplitude equations are derived and a linear stability criterion for the pulse solutions is obtained using the Hamiltonian formulation of the problem.  相似文献   

11.
Employing the geometrically exact approach, the governing equations of nonlinear planar motions around nonshallow prestressed equilibrium states of slender beams are derived. Internal kinematic constraints and approximations are introduced considering unshearable extensible and inextensible beams. The obtained approximate models, incorporating quadratic and cubic nonlinearities, are amenable to a perturbation treatment in view of asymptotic solutions. The different perturbation schemes for the two mechanical beam models are discussed.  相似文献   

12.
An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and planar bending is presented, electing as primary displacement variable the cross-section rotations and taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encompass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint, it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success, since very small deviations were observed with respect to results obtained via numerical integration of the exact equation of equilibrium, even when loads much higher than the critical ones were considered. Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to accommodate this sort of analysis.  相似文献   

13.
The principle of virtual displacements is used to obtain the equations of plane motion, in generalized coordinates, of a free rigid body with a system of flexible inextensible rods connected in series by elastoviscous joints at large angles of rotation. Each rod rotates as a line connecting its ends and bends according to two given shapes. The imposition of the kinematic conditions of inextensibility of the rods ensures that the mathematical model of the system does not contain oscillations caused by longitudinal vibrations of the rods. This fact improves the computational stability of the system.  相似文献   

14.
 近几年来,笔者提出与发展了随机激励的耗散的哈密顿系统理 论,包括精确平稳解、等效非线性系统法、拟哈密顿系统随机平均法、 拟哈密顿系统的随机稳定性与随机分岔、首次穿越损坏分析方法及非 线性随机最优控制策略,从而构成了一个非线性随机动力学与控制的 哈密顿理论框架.本文简要介绍这一理论框架.  相似文献   

15.
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard–Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler–Poincaré and Hamilton–Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler–Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange–Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.  相似文献   

16.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system and a partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi partially integrable Hamiltonian system. In the present paper, the averaged Itô and Fokker-Planck-Kolmogorov (FPK) equations for quasi partially integrable Hamiltonian systems in both cases of non-resonance and resonance are derived. It is shown that the number of averaged Itô equations and the dimension of the averaged FPK equation of a quasi partially integrable Hamiltonian system is equal to the number of independent first integrals in involution plus the number of resonant relations of the associated Hamiltonian system. The technique to obtain the exact stationary solution of the averaged FPK equation is presented. The largest Lyapunov exponent of the averaged system is formulated, based on which the stochastic stability and bifurcation of original quasi partially integrable Hamiltonian systems can be determined. Examples are given to illustrate the applications of the proposed stochastic averaging method for quasi partially integrable Hamiltonian systems in response prediction and stability decision and the results are verified by using digital simulation.  相似文献   

17.
For a fractional generalized Hamiltonian system, in terms of Riesz derivatives, stability theory for the manifolds of equilibrium states is presented. The gradient representation and second order gradient representation of a fractional generalized Hamiltonian system are studied, and the conditions under which the system can be considered as a gradient system and a second order gradient system are given, respectively. Then, equilibrium equations, disturbance equations, and first approximate equations of a fractional generalized Hamiltonian system are obtained. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to a fractional generalized Hamiltonian system, and three propositions on the stability of the manifolds of equilibrium states of the system are investigated. As the special cases of this article, the conditions which a fractional generalized Hamiltonian system can be reduced to a generalized Hamiltonian system, a fractional Hamiltonian system and a Hamiltonian system are given, respectively, and the stability theory for the manifolds of equilibrium states of these systems are obtained. Further, a fractional dynamical system and a fractional Volterra model of the three species groups are given to illustrate the method and results of the application. Finally, by using the method in this paper, we construct a new kind of fractional dynamical model, i.e. the fractional Hénon–Heiles model, and we study its stability of the manifolds of equilibrium states.  相似文献   

18.
We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic–parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.  相似文献   

19.
The general theory of shock and acceleration waves in isotropic, incompressible, hyperelastic solids is used in conjunction with the concept of finite elements to construct discrete models of highly nonlinear wave phenomena in elastic rods. A numerical integration scheme which combines features of finite elements and the Lax-Wendroff method is introduced. Numerical calculations of the critical time for shock formulation are given. Numerical results obtained from representative cases are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号