首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of an experimental investigation of the acoustic field produced by turbulent subsonic jets under internal acoustic excitation are presented. It is shown that under the action of saw-tooth finite-amplitude waves the turbulent jets can radiate Mach waves into the ambient medium due to compact acoustic disturbances traveling along the jet at a velocity greater than the speed of sound in the surrounding space.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 153–158. Original Russian Text Copyright © 2004 by Pimshtein.  相似文献   

2.
Two methods of mechanically exciting a plane turbulent free jet are described; periodic perturbatin of the nozzle exit velocity, and forced oscillation of a small vane located in the het potential core. Hot-wire measurements obtained by conditional sampling techniques indicated that the flow fields of the two jets are substantially different although they have the same Strouhal number of 0.0032. While the mean flow development of the pulsed jet can be described adequately by a quasi-steady model, the vane-excited jet exhibits unsteady effects which depart significantly from quasi-steady approximations such as increased entrainment, amplification of excitation and non-linear effects in the form of the presence of high harmonics. The constancy of momentum flux has been examined in both the steady and unsteady jets  相似文献   

3.
Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones.  相似文献   

4.
Introduction Themechanismforthegenerationofcoherentstructuresinthewallregionofaturbulent boundarylayerhasalwaysbeeninconcernandinvestigated.AccordingtoTsujimotoand Miyake[1],thecharacteristicsofturbulenceinthewallregionweremainlydeterminedbythe generationandevolutionofcoherentstructures,notbythesmall_scaleturbulence.However, excitationsfromregionofy >60werefoundtobenecessary,otherwisethewallregionwould degeneratetolaminarflow.Therefore,theinvestigationofthemechanismthathowcoherent structuresi…  相似文献   

5.
Both the velocity and temperature measurements taken in turbulent Rayleigh-B‘‘enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctu-ations are intermittent and can be well-described by the She-Leveque hierarchical structure. A positive correlation between the vertical velocity and the temperature differences is found both at the center, near the sidewall and near the bottom of the convection cell, supporting that buoyancy is significant in the Bolgiano regime. Moreover, the intermittent nature of the temperature fluctuations in the Bol-giano regime can be attributed to the variations in the temperature dissipation rate. However, the relations between the velocity and temperature structure functions and their correlations implied by the Bolgiano-Obukhov scaling are not supported by experimental measurements.  相似文献   

6.
Because of practical application to jet pumps, ejectors, furnaces and similar devices, the turbulent discharge of a round jet into a coaxial duct and the mixing patterns in the various regions into which the flow may be divided, are of considerable interest. In this paper the mixing of an incompressible jet with a similar fluid in a cylindrical tube is considered up to the plane which marks the disappearance of potential flow. Under the assumption of similarity of velocity profile and with neglect of the wall boundary layer and nozzle wake, the continuity and momentum equations, in integral form, are solved for the velocities and mixing region radii at any given section. Prandtl's momentum transfer hypothesis may be used to determine the dependence of these on distance downstream. By examining the various flow regimes in detail this analysis is formally able to cover ratios of primary to secondary flow velocities of from one to infinity and, similarly, all ratios of duct to nozzle diameters, thereby extending earlier investigations. It also corrects work on similar basis in which inappropriate linearisations were made. The ‘exact’ results constitute a basis from which extension to include additional effects may be made.  相似文献   

7.
An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.  相似文献   

8.
Numerical simulation of axisymmetric turbulent jets   总被引:1,自引:0,他引:1  
The flow in axisymmetric turbulent jets is numerically simulated with the use of a semi-empirical second-order turbulence model including differential transport equations for the normal Reynolds stresses. Calculated results are demonstrated to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 55–60, September–October, 2008.  相似文献   

9.
为了深入了解湍流流动机理以及湍流拟序结构发现过程的影响因素,本文采用大涡模拟方法对不同入口射流伴流速度比的平面湍射流流动进行了数值模拟。采用分步投影法求解动量方程,亚格子项采用标准Smagorinsky亚格子模式模拟,压力泊松方程采用修正的循环消去法快速求解,空间方程采用二阶精度的差分格式,在时间方向上采用二阶精度的显式差分格式。模拟结果给出了平面射流中湍流拟序结构的瞬态发展演变过程,分析了入口速度比对射流拟序结构发展演化过程及宏观流场形态的影响。为进一步研究射流拟序结构及其在湍流流动中的作用提供了基础。  相似文献   

10.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Where turbulent liquid jets are used for cutting and mining purposes the pressure generated by impact must be maximized. Initial jet behaviour has an important influence on subsequent jet impact pressures at medium range. Nozzle wall boundary layer history has a strong influence on the initial jet, and certain boundary layer features can be linked to poor jet performance. The procedure outlined in this paper was developed to eliminate new nozzle designs or changes in operating conditions on the grounds of badly behaved nozzle boundary flow. The design procedure consists of a potential flow analysis and a boundary layer analysis coupled to empirical correlations for boundary layers in accelerated flows. The procedure is exemplified by application to the design of a nozzle to be used for the specific purpose of mining china clay.  相似文献   

13.
Effects of embedded longitudinal vortices on heat transfer in film-cooled turbulent boundary layers at different blowing ratios are discussed. These results were obtained in boundary layers at free-stream velocities of 10 and 15 m/s. Film coolant was injected from a single row of holes at blowing ratios of 0.47–1.26. A single longitudinal vortex was induced upstream of the film-cooling holes using a half-delta wing attached to the wind tunnel floor. Heat transfer measurements were made downstream of injection using a constant heat flux surface with 126 thermocouples for surface temperature measurements. For all blowing ratios examined, the embedded vortices cause significant alterations to wall heat transfer and to film cooling distributions. Measurrments of mean temperatures and mean velocities in spanwise planes show that high wall heat transfer regions are associated with regions of high near-wall longitudinal velocity where very little film coolant is present. In addition to high heat transfer regions associated with the vortex downwash, there are also secondary heat transfer peaks. These secondary peaks develop due to shear layer mixing and interaction between the vortex and cooling jets and become higher in magnitude and more persistent with downstream distance as the blowing ratio increases from 0.47 to 1.26.  相似文献   

14.
The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh—Bénard configuration.  相似文献   

15.
The k − turbulence model and a version of a second-moment closure, modified to include the effect of pressure reflections from a solid surface, have been used as the basis of predictions of the flow that results from the orthogonal impingement of circular and two-dimensional (2-D) jets on a flat surface. Comparison of model predictions has been made with velocity measurements obtained in the stagnation and wall jet regions of the impinging flows. Results, in general, confirm the superiority of the Reynolds stress transport equation model for predicting mean and fluctuating velocities within the latter regions of such flows. In particular, modifications to the second-moment closure to account for the influence of the surface in distorting the fluctuating pressure field away from the wall successfully predict the damping of normal-to-wall velocity fluctuations throughout the impinging flows. In contrast, results derived from the eddy-viscosity-based approach do not, in general, accurately reproduce experimental observations.  相似文献   

16.
A novel notion of turbulent structure the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velocity. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of turbulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.  相似文献   

17.
The theoretical study researched into heat transfer of turbulent film boiling on an isothermal ellipsoid under high and low velocity liquid. The flowing velocity of the saturated liquid at the boundary layer is determined by potential flow theory. The larger the eccentricity parameter is the smaller the mean Nusselt number will be. Besides, for the cases of turbulent film boiling under the flowing liquid, the increase in the Froude number will bring out an increase in the mean Nusselt number.  相似文献   

18.
This paper attempts to reproduce numerically previous experimental findings with opposed flows and extends their range to quantify the effects of upstream pipes and nozzles with inviscid, laminar and turbulent flows. The choice of conservation equations, boundary conditions, algorithms for their solution, the degree of grid dependence, numerical diffusion and the validity of numerical approximations are justified with supporting calculations where necessary. The results of all calculations on the stagnation plane show maximum strain rates close to the annular exit from the nozzles and pipes for lower separations and it can be expected that corresponding reacting flows will tend to extinguish in this region with the extinction moving towards the axis. With laminar flows, the maximum strain rate increased with Reynolds number and the maximum values were generally greater than with inviscid flows and smaller than with turbulent flows. With large separations, the strain rates varied less and this explains some results with reacting flows where the extinction appeared to begin on the axis. The turbulent‐flow calculations allowed comparison of three common variants of a two‐equation first‐moment closure. They provided reasonable and useful indications of strain rates but none correctly represented the rms of velocity fluctuations on the axis and close to the stagnation plane. As expected, those designed to deal with this problem produced results in better agreement with experiment but were still imperfect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
We report a study of liquid jets which are formed by bubble collapse under cavitation-generated pressure waves. The results obtained for jets formed from samples of a multigrade motor oil provide the first evidence that such jets experience a significant degree of extensional deformation, at high rates of extension. The results support the conclusion that the reduced velocity and final length of such jets, relative to their Newtonian counterparts, is due to an increased resistance to extensional flow. Insofar as the multigrade oils studied here are made viscoelastic by polymer additives and evidently possess significant levels of resistance to extension, the results provide evidence in support of a mitigating effect of viscoelasticity on a cavitation damage mechanism, as mooted by Berker et al. (J Non Newton Fluid Mech 56:333, 1995).  相似文献   

20.
Direct numerical simulations of the flow field of an element of banks of impinging axial and radial slot jets for different Reynolds number are presented. Simulations have been obtained from the solution of the Navier–Stokes equations. Results show for the chosen geometry a transition from steady to periodic to chaotic flow with increasing Reynolds number. The transition Reynolds number is nearly 50% smaller for the radial jet than for the axial jet. Period doubling has been observed for both cases, but only the radial jet shows periodic windows of chaos. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号