首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
It has been confirmed that diabetes mellitus (DM) carries increased oxidative stress. This study evaluated the effects of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. After induction of diabetes, diabetic mice were administered daily doses of 50, 100 and 200 mg/kg salidroside for 28 days. Body weights, fasting blood glucose (FBG), serum insulin, TC (total cholesterol), TG (triglyceride), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were measured. Results showed that salidroside possessed hypoglycemic activity and protective effects against diabetes-induced oxidative stress, which could significantly reduce FBG, TC, TG and MDA levels, and at same time increase serum insulin levels, SOD, GPx and CAT activities. Therefore, salidroside should be considered as a candidate for future studies on diabetes.  相似文献   

2.
The influence of CCl4 on the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), the value of the total antioxidant status (TAS), and the concentration of malonic dialdehyde (MDA) and glutathione (GSH) was monitored in plasma or whole blood of rabbits. The administration of CCl4 caused the increase of the SOD activity to approximately 150 % and the decrease in the activity of GPx and GR by about 50 %. These changes were accompanied with the increase in TAS value and MDA concentration and the decrease of GSH concentration. The effect of CCl4 was suppressed by the previous 7 days lasting or simultaneous administration of vitamin E. Oxidative stress caused by CCl4 was accompanied by the development of reactive oxygen forms, especially superoxide radical anion.  相似文献   

3.
In this work, for the first time, we constructed a novel multi‐nanozymes cooperative platform to mimic intracellular antioxidant enzyme‐based defense system. V2O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2O5@pDA@MnO2 nanocomposite could serve as one multi‐nanozyme model to mimic intracellular antioxidant enzyme‐based defense procedure in which, for example SOD, CAT, and GPx co‐participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy.  相似文献   

4.
We investigated the effects of Fufang Kushen Injection Liquid (FFKSIL) on gastric immunity and oxidant-antioxidant status during N-methyl-N′-nitro-N-nitroso-guanidine (MNNG)-induced gastric carcinogenesis. The extent of lipid peroxidation and the levels of reduced glutathione (GSH) and activities of the GSH-dependent enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were used to monitor the peroxidative balance. Enhanced lipid peroxidation in the gastric cancer animals was accompanied by significant decreases in the activities of GSH, GPx, GST and GR. Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-α levels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity.  相似文献   

5.
UV light leads to release of different secretory factors from irradiated cells of which some of them have been characterized. We have reported earlier that cells exposed to the supernatant medium from irradiated cells were resistant to killing by some genotoxic agents. In this study, we present our finding that demonstrates DNA damage induced by UV or H(2)O(2) is lowered on prior exposure to the UV released factors (UVRF). Production of ROS in cells and lipid peroxidation was also lowered. It was found that treatment of unexposed cells with UVRF present in the supernatant medium altered the antioxidant defense activity in cells. Significant was the increase in catalase (CAT) and Cu-Zn superoxide dismutase (SOD) activity, whereas glutathione peroxidase (GPx) and reduced glutathione (GSH) levels remained unaffected. Cells exposed to UVRF prior to UV or H(2)O(2) treatment also experienced such upregulation; however, the remarkable increase in the GPx activity exhibited by these cells was not observed in cells exposed to H(2)O(2) or UV alone. It appears that exposure to UVRF tinkered with antioxidant defense in cells to facilitate its proliferation upon assault by an agent that can produce oxidative damage.  相似文献   

6.
The effect of virus inactivation by 1,9-dimethylmethylene blue (DMMB) phototreatment, methylene blue (MB) phototreatment or heat on the activities of antioxidant systems of stroma-free hemoglobin (SFH) was studied. DMMB photoinactivated human immunodeficiency virus by > 3.69 log10 under conditions that inactivated 3.33 log10 of vesicular stomatitis virus (VSV). Under conditions which inactivated VSV by 6.10 log10 (1.37 J/cm2 irradiation and 2 microM DMMB), there was little change in the methemoglobin (Met-Hb) formation, concentration of reduced glutathione (GSH), or superoxide dismutase (SOD), catalase (CAT) or glutathione peroxidase (GPX) activities. However, the activity of glutathione reductase (GR) was decreased by 77%. Under conditions that inactivated VSV by 5.69 log10 (1.37 J/cm2 irradiation and 24 microM MB) there was little effect of MB phototreatment on SOD, CAT, GPX and GSH activities. However, GR activity was decreased by 74% and Met-Hb content reached 3.98%. Under conditions that inactivated VSV by more than 6.20 log10 (60 degrees C for 2 min), virucidal heat treatment resulted in 27% Met-Hb formation and decreased GPX activity by 43%. No significant decline in SOD, CAT or GR activities or GSH concentration was observed. These results suggest that, compared with heat treatment and MB phototreatment, virucidal DMMB treatment preserves not only the oxidative state of hemoglobin but also the antioxidant systems against superoxide and hydrogen peroxide, although the reduced GR activity may limit the quenching capacity of antioxidants in DMMB-treated SFH.  相似文献   

7.
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Curcumin (CUR) is a natural polyphenol with well-documented antioxidant and anti-inflammatory properties. The aim of this work is to evaluate the effects of curcumin on CAT, GPx, and SOD activity and the inhibition of oxidative damage after the acute and chronic exposure to O3. Fifty male Wistar rats were divided into five experimental groups: the intact control, CUR-fed control, exposed-to-O3 control, CUR-fed (preventive), and CUR-fed (therapeutic) groups. These two last groups received a CUR-supplemented diet while exposed to O3. These experiments were performed during acute- and chronic-exposure phases. In the preventive and therapeutic groups, the activity of plasma CAT, GPx, and SOD was increased during both exposure phases, with slight differences; concomitantly, lipid peroxidation and protein carbonylation were inhibited. For this reason, we propose that CUR could be used to enhance the activity of the antioxidant system and to diminish the oxidative damage caused by exposure to O3.  相似文献   

8.
To assess the relative importance of long‐ and short‐term cellular defense mechanisms in seasonally UV‐R‐acclimated Actinia tenebrosa (Anthozoa, Actiniidae), individuals were exposed to summer doses of PAR, UV‐A, UV‐B and enhanced UV‐B (20%) for a period of 4 days. Mycosporine‐like amino acids (MAAs) and cyclobutane pyrimidine dimer (CPD) concentrations were quantified, while oxidative damage to lipids and proteins, and the activities or levels of the antioxidant enzymes SOD, CAT, GR, GPOX and total glutathione were determined. Our results show that summer UV‐R‐acclimated individuals had a higher UV‐R tolerance, with no significant increases in CPDs levels, than winter‐acclimated sea anemones possibly due to higher MAA concentrations. Summer‐acclimated individuals showed increased lipid and protein oxidation and GPOX activity only when they were exposed to UV‐B at 20% above ambient UV‐R levels. In contrast, winter‐acclimated sea anemones showed elevated levels of oxidative damage, GPOX and SOD activities after exposure to UV‐A or UV‐B at ambient and elevated levels. Thus, this study indicates that long‐term UV‐R acclimation mechanisms such as the accumulation of MAAs could be more important than short‐term increases in antioxidant defenses with respect to reducing indirect UV‐R damage in intertidal sea anemones.  相似文献   

9.
Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography–inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status—concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)—were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.  相似文献   

10.
11.
Brief episodes of myocardial ischemia-reperfusion (IR) employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR)-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA) level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.  相似文献   

12.
In this paper, we constructed a novel bifunctional superoxide dismutase(SOD)/glutathione peroxi- dase(GPx) mimic, a selenium-, copper-containing 35-mer peptide conjugate(Se-Cu-35P) in which a three-amino acid linker((31y-Asn-Gly) connects the C-terminus of 17-mer polypeptide SOD mimic with the N-terminus of 15-mer po- lypeptide GPx mimic. The SOD and GPx activities of Se-Cu-35P are two orders of magnitude lower than those of natural SOD and GPx, respectively. It provides a GPx activity 56-fold higher than Ebselen(a well-known GPx mimic). The glutathione(GSH) binding constant is 5.6× 10^2 L.mol 1. Se-Cu-35P synergistically resists against the inactivation by H202 and protects the mitochondria from oxidative damage in a dose dependent manner. These results highlight the challenge of generating an efficient SOD/GPx synergism mimic. It could facilitate the studies of the cooperation of GPx and SOD and could be a potential therapeutic agent for the treatment of ROS-mediated diseases,  相似文献   

13.
Zhao J  Su Y  Chen A  Yuan H  Liu L  Wu W 《Molecules (Basel, Switzerland)》2011,16(12):10433-10442
Oxidative stress is involved in the development and progression of otitis media (OM). In this study, we investigated the effect of Ginkgo leaf parenteral solution on blood and cochlea antioxidant and immunity indexs in OM rats. In OM model rats, blood and cochlea malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) levels were significantly increased, whereas antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR)) were significantly decreased compared with normal rats. Treatment with Ginkgo leaf parenteral solution restored the altered parameters in a dose-dependent manner. We conclude that Ginkgo leaf parenteral solution confers protection against oxidative injuries in OM rats by increasing activities of antioxidants and immunity, suggesting a potential drug for the prevention and therapy of OM.  相似文献   

14.
Chronic ultraviolet (UV) irradiation is known to cause a variety of changes in the skin, including wrinkles, pigmented spots and carcinogenesis. To explore time dependent changes in several parameters with chronic UV irradiation, we examined the molecular changes in connective tissue, intracellular defence enzymes and free radical antioxidant substances in hairless mice skin caused by chronic exposure to UV-A including 2% UV-B. Connective tissue changes were estimated using hydroxyproline and isodesmosine assays as a measure of collagen and elastin concentrations, respectively. After 6 weeks irradiation, the insoluble collagen and elastin were both substantially elevated, as were the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). Continued UV irradiation resulted in a steady decline in SOD and lipid soluble antioxidants, while the GSH-Px remained elevated, suggesting that SOD and lipid soluble antioxidants in the skin may be involved in protecting it from UV damage and deteriorate with chronic irradiation.  相似文献   

15.
Inflammation of the gastrointestinal tract is associated with reactive oxygen species (ROS) genesis. Alleviation of oxidative stress is achieved by using antioxidants and probiotics. Present study investigates a synergistic effect of the probiotic Escherichia coli CFR 16 containing Vitreoscilla haemoglobin gene (vgb), green fluorescent protein (gfp) gene and pyrroloquinoline quinone (pqq) gene cluster on oxidative stress induced by 1,2-dimethylhydrazine (DMH). Adult virgin Charles foster male rats (3–4 months) weighing 200–250 g were administered with DMH (25 mg/kg body weight, s.c.) twice a week for eight consecutive weeks. Rats receiving only DMH dose showed increased lipid peroxidation in liver and intestinal tissues with reduced activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Oral dose of E. coli CFR 16::vgb-gfp harbouring pqq gene cluster increased rat faecal PQQ concentration by twofold, reduced lipid peroxidation and retained SOD, CAT and GPx activities close to normal levels in liver and colonic tissues following DMH treatment. In addition, significant protection was found in colonic histological sections of these rat groups. This study demonstrates a protective efficacy in the following order: E. coli CFR 16?<?E. coli CFR 16::vgb-gfp?<?vitamin C?=?PQQ?<?E. coli CFR 16::vgb-gfp (pqq).  相似文献   

16.
The present study examines the effect of methanolic extract of T. violacea rhizomes on high cholesterol (2%) diet fed rats (HCD). At the end of 4 weeks, serum total protein, albumin, reduced glutathione (GSH), and markers of oxidative stress viz., catalase (CAT), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS--a marker of lipid peroxidation), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) in the serum, aorta, liver and heart of HCD and normal rats were assessed and compared. A significant (p < 0.05) elevation in TBARS, and a reduction (p < 0.05) in serum total protein, albumin, GSH and antioxidant enzyme activities was observed in tissues of HCD fed rats compared with the normal group. Co-administration of crude extracts of T. violacea rhizomes protected the liver, heart, serum and aorta against HCD-induced lipid peroxidation in a dose dependant manner. The activities of the extract (500 mg/kg) compared favorably with gemfibrozil. The extracts also protected against HCD-induced reduction in serum total protein, GSH and restored the activities of antioxidant tissues (liver, heart and aorta) enzymes to near normal values. This result suggested that consumption of T. violacea rhizome may help to protect against hypercholesterolemia- induced oxidative stress diseases in the heart and liver.  相似文献   

17.
The present study evaluates the regulatory effect of Nano-Curcumin (Nano-CUR) against tartrazine (TZ)-induced injuries on apoptosis-related gene expression (i.e., p53, CASP-3 and CASP-9), antioxidant status, and DNA damages in bone marrow in treated rats. Male rats were arbitrarily separated into five groups, and each group was comprised of 10 rats each. The 1st group served as control (G1). The 2nd group ingested 7.5 mg TZ/kg. b.w. (body weight). The 3rd group ingested Nano-CUR 1 g/kg b.w. The 4th and 5th groups were respectively administered with (1 g Nano-CUR + 7.5 mg TZ/kg. b.w.) and (2 g Nano-CUR + 7.5 mg TZ/kg. b.w.). At the end of the experiment, blood samples, livers, and kidneys were collected. Livers and kidneys were homogenized and used for the analysis of reduced glutathione, malonaldhyde, total antioxidant capacity, lipid peroxide antioxidant enzyme activities, apoptosis-related gene expression, and genotoxicity by comit test. The ingestion of TZ for 50 days resulted in significant decreases in body, and kidney weights in rats and a relative increase in the liver weight compared to control. In contrast, the ingestion of Nano-CUR with TZ remarkably upgraded the body weight and relative liver weight compared to the normal range in the control. Aditionally, TZ ingestion in rats increased the oxidative stress biomarkers lipid peroxide (LPO) and malonaldehyde (MDA) significantly, whereas it decreased the reduced glutathione (GSH) levels and total antioxidant capacity (TAC). Similarly, the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) significantly deteriorated in response to TZ ingestion. Moreover, the results revealed a remarkable up-regulation in the level of expression for the three examined genes, including p53, CASP-3, and CASP-9 in TZ-ingested rats compared to the control. On the other hand, the comet assay result indicates that the ingestion of TZ induced DNA damage in bone marrow. Notably, the administration of Nano-CUR protected the kidney and liver of TZ-ingested rats as evidenced by a significant elevation in all antioxidant activities of tested enzymes (i.e, SOD, GPx, and CAT), vital recovery in GSH and TAC levels, and a statistical decrease in LPO and MDA compared to TZ-ingested rats. Interestingly, the ingestion of rats with TZ modulates the observed up-regulation in the level of expression for the chosen genes, indicating the interfering role in the signaling transduction process of TZ-mediated poisoning. The results indicate that the administration of Nano-CUR may protect against TZ-induced DNA damage in bone marrow. According to the results, Nano-CUR exerted a potential protective effect against oxidative stress, DNA damage, and the up-regulation of apoptosis-related genes induced by TZ ingested to rats.  相似文献   

18.
Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure.  相似文献   

19.
Abstract— Superoxide dismutase (SOD) activity was induced by ca 2-fold (to5–6 U) when Trichoplusia ni midfifth-instar larvae were exposed to two toxic oxygen species generating plant pro-oxidants, quercetin (a flavonoid) and xanthotoxin (8-methoxypsoralen; a photoactive furanocoumarin). Very high catalase (CAT) activity ( ca 300 U) of this insect was not affected by 8-methoxypsoralen, but was slightly decreased by quercetin. No Se-dependent glutathione peroxidase (GPOX) activity was observed, but high glutathione transferase (GST) peroxidase activity (over 50 U) in this insect was slightly induced by 8-methoxypsoralen (8-MOP), and was partially inhibited by quercetin, 8-Methoxypsoralen induced the activity of glutathione reductase (GR), but quercetin partially inhibited the activity of this enzyme. An increase in SOD activity appears to be the main response of this insect to dietary exposure to pro-oxidant compounds. High CAT activity guarantees the destruction of large cellular increases in H2O2, a product of rapid dismutation of superoxide from induced activity of SOD. Moreover, GST with its peroxidase activity apparently substitutes for GPOX, forming a GST/GR enzyme pair as a primary line of defense against deleterious organic hydroperoxides. These studies clearly point out the key role for an insect's antioxidant enzymatic countermeasures against defensive pro-oxidant compounds produced by plants.  相似文献   

20.
Previous evidence supports the important role that oxidative stress (OxS) plays in metabolic syndrome (MetS)-related manifestations. We determined the relationship between the number of MetS components and the degree of OxS in MetS patients. In this comparative cross-sectional study from the LIPGENE cohort, a total of 91 MetS patients (43 men and 48 women; aged between 45 and 68 years) were divided into four groups based on the number of MetS components: subjects with 2, 3, 4 and 5 MetS components (n=20, 31, 28 and 12, respectively). We measured ischemic reactive hyperemia (IRH), plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), total nitrite, lipid peroxidation products (LPO), hydrogen peroxide (H2O2), superoxide dismutase (SOD) and glutathione peroxidase (GPx) plasma activities. sVCAM-1, H2O2 and LPO levels were lower in subjects with 2 or 3 MetS components than subjects with 4 or 5 MetS components. IRH and total nitrite levels were higher in subjects with 2 or 3 MetS components than subjects with 4 or 5 MetS components. SOD and GPx activities were lower in subjects with 2 MetS components than subjects with 4 or 5 MetS components. Waist circumference, weight, age, homeostatic model assessment-β, triglycerides (TGs), high-density lipoprotein and sVCAM-1 levels were significantly correlated with SOD activity. MetS subjects with more MetS components may have a higher OxS level. Furthermore, association between SOD activity and MetS components may indicate that this variable could be the most relevant OxS biomarker in patients suffering from MetS and could be used as a predictive tool to determine the degree of the underlying OxS in MetS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号