首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The tetradentate ligand 2,9-di-(2'-pyridyl)-1,10-phenanthroline is synthesized in 62% yield by the Stille coupling of 2,9-dichloro-1,10-phenanthroline and 2-(tri-n-butylstannyl)pyridine. Treatment of this ligand with RuCl3.3H2O and a 4-substituted pyridine results in the formation of a complex in which the tetradentate ligand occupies the equatorial plane and two pyridines are bound axially. The interior N-Ru-N angles vary from 76.1 degrees to 125.6 degrees , showing considerable distortion from the 90 degrees ideal. The lowest energy electronic transition is sensitive to the electronegativity of the 4-substituent on the axial pyridines, varying from 516 nm for the CF3 group to 580 nm for the NMe2. The oxidation potentials mirror this trend, spanning a range of 1.36-1.03 V, while the reduction potentials show less variation (-0.97 to -1.08 V). The complexes are nonemissive, presumably due to competitive nonradiative processes caused by distortion of the system.  相似文献   

2.
The reaction of 2,9-di(pyrid-2'-yl)-1,10-phenanthroline (dpp) with [RuCl(3)·3H(2)O] or [Ru(DMSO)(4)Cl(2)] provides the reagent trans-[Ru(II)(dpp)Cl(2)] in yields of 98 and 89%, respectively. This reagent reacts with monodentate ligands L to replace the two axial chlorides, affording reasonable yields of a ruthenium(II) complex with dpp bound tetradentate in the equatorial plane. The photophysical and electrochemical properties of the tetradentate complexes are strongly influenced by the axial ligands with electron-donating character to stabilize the ruthenium(III) state, shifting the metal-to-ligand charge-transfer absorption to lower energy and decreasing the oxidation potential. When the precursor trans-[Ru(II)(dpp)Cl(2)] reacts with a bidentate (2,2'-bipyridine), tridentate (2,2';6,2'-terpyridine), or tetradentate (itself) ligand, a peripheral pyridine on dpp is displaced such that dpp binds as a tridentate. This situation is illustrated by an X-ray analysis of [Ru(dpp)(bpy)Cl](PF(6)).  相似文献   

3.
Cu11 complexes of 1,10-phenanthroline, disubstituted at the 2 and 9 positions or monosubstituted at the 2 position by phenyl moieties possessingortho substituents, were prepared and investigated by spectroscopic and electrochemical methods. The electronic spectral d-d band position varies from 14 500 to 13 200 cm−1. E.s.r. g values are between 2.256 to 2.283 and A between 164 to 117×10−4 cm−1. Thebis[2,9-di(o-substituted phenyl)-1,10-phenanthroline]Cu11 complexes undergo reversible one-electron electrochemical reduction (Cu11/Cu1) in the +0.536 to +0.825 V potential range versus s.c.e., whereas thebis[2-mono(o-substituted phenyl)-1,10-phenanthroline]Cu11 complexes undergo reduction in the +0.360 to +0.405 V range; the redox couple is found to be quasireversible. Emission studies on copper(I) complexes show that onlybis[2,9-di(o-tolyl)-1,10-phen]Copper(I) complex exhibits emission properties. Emission behaviour of other structurally similar compounds is explored. TMC 2555  相似文献   

4.
A series of three derivatives of 1,8-di(pyrid-2'-yl)carbazole were prepared by Stille-type coupling of 2-(tri-n-butylstannyl)pyridine with the appropriate 1,8-dibromocarbazole. The carbazoles were prepared by appropriate substitution methodologies on the parent carbazole or by palladium-catalyzed cyclization of di-(p-tolyl)amine to provide the carbazole ring system. An X-ray structure of the di-tert-butyl derivative confirmed that both pyridyl groups were oriented for favorable intramolecular H-bonding to the central N-H. Two orientations of the molecule were found in the unit cell and this observation was corroborated by two N-H stretching bands in the solid state IR. Substitution of N-H by N-D led to increased emission intensity through diminished intramolecular deactivation of the excited state. The di-tert-butyl derivative formed a tridentate complex with Pd(II), which showed a red-shifted band attributed to an intraligand charge transfer state.  相似文献   

5.
The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal ions with an ionic radius close to 1.0 A, particularly Cd(II), Gd(III), and Bi(III), and low affinity for small metal ions such as Ni(II) and Zn(II). The complexes of several metal ions, such as Cd(II), Gd(III), and Pb(II), showed an equilibrium involving deprotonation of the complex at remarkably low pH values, which was attributed to deprotonation of coordinated water molecules according to: [M(DPP)(H2O)]n+ <==> [M(DPP)(OH)](n-1)+ + H+. The tendency to deprotonation of these DPP complexes at low pH is discussed in terms of the large hydrophobic surface of the coordinated DPP ligand destabilizing the hydration of coordinated water molecules and the build-up of charge on the metal ion in its DPP complex because of the inability of the coordinated DPP ligand to hydrogen bond with the solvent.  相似文献   

6.
Shinsaku Yamazaki 《Polyhedron》1985,4(11):1915-1923
A series of potentially five-coordinate Pd(II) complexes, [Pd(PMe2Ph)3(2,9-R2-phen)][BF4]2 (R = H or Me; phen = 1,10-phenanthroline  相似文献   

7.
A dynamic 1H NMR study has been carried out on the fluxional motion of the symmetric chelating ligand 2,9-dimethyl-1,10-phenanthroline (Me2-phen) between nonequivalent exchanging sites in a variety of square-planar complexes of the type [Pt(Me)(Me2-phen)(PR3)]BArf, 1-14, (BArf = B[3,5-(CF3)2C6H3]4). In these compounds, the P-donor ligands PR3 encompass a wide range of steric and electronic characteristics [PR3 = P(4-XC6H4)3, X = H 1, F, 2, Cl 3, CF3 4, MeO 5, Me 6; PR3 = PMe(C6H5)2 7, PMe2(C6H5) 8, PMe3 9, PEt3 10, P(i-Pr)3 11, PCy(C6H5)2 12, PCy2(C6H5) 13, PCy3 14]. All complexes have been synthesized and fully characterized through elemental analysis, 1H and 31P{1H} NMR. X-ray crystal structures are reported for the compounds 8, 11, 14, and for [Pt(Me)(phen)(P(C6H5)3)]PF6 (15), all but the last showing loss of planarity and a significant rotation of the Me2-phen moiety around the N1-N2 vector. Steric congestion brought about by the P-donor ligands is responsible for tetrahedral distortion of the coordination plane and significant lengthening of the Pt-N2 (cis to phosphane) bond distances. Application of standard quantitative analysis of ligand effects (QALE) methodology enabled a quantitative separation of steric and electronic contributions of P-donor ligands to the values of the platinum-phosphorus 1J(PtP) coupling constants and of the free activation energies DeltaG++ of the fluxional motion of Me2-phen in 1-14. The steric profiles for both 1J(PtP) and DeltaG++ show the onset of steric thresholds (at cone angle values of 150 degrees and 148 degrees , respectively), that are associated with an overload of steric congestion already evidenced by the crystal structures of 11 and 14. The sharp increase of the fluxional rate of Me2-phen can be assumed as a perceptive kinetic tool for revealing ground-state destabilization produced by the P-donor ligands. The mechanism involves initial breaking of a metal-nitrogen bond, fast interconversion between two 14-electron three-coordinate T-shaped intermediates containing eta1-coordinated Me2-phen, and final ring closure. By use of the results from QALE regression analysis, a free-energy surface has been constructed that represents the way in which any single P-donor ligand can affect the energy of the transition state in the absence of aryl or pi-acidity effects.  相似文献   

8.
Two types of mixed-ligand complexes, i.e. [M(phen)2 (dip)]2+ and [M(phen)(dip)2]2+ (M = iron(II) and nickel(II); phen = 1,10-phenanthroline and dip = 4,7-diphenyl-1,10-phenanthroline) have been prepared from their related tris-complexes, [M(phen)3]2+ by ligand substitution, and isolated by semi-preparative HPLC. Elemental and chromatographic analyses confirm the purity of the isolated complexes while u.v./vis and i.r. spectra were used to identify and characterize them. 1H-n.m.r. and room temperature Mössbauer spectra of the iron(III) complexes were also measured and the results are discussed. In addition, our preliminary results on hypochromicity in the MLCT band and circular dihroism (CD) emerging in the u.v./vis region upon addition of CT(calf thymus)-DNA to the racemic complexes indicated that the iron(II) mixed-ligand complexes interact with CT-DNA.  相似文献   

9.
10.
A bis-chelating ligand (1), made of two 1,10-phenanthroline subunits connected with a p-(CH2)2C6H4(CH2)2- spacer through their 4 positions, has been prepared, using Skraup syntheses and reaction of the anion of 4-methyl-7-anisyl-1,10-phenanthroline with α,α’-dibromo-p-xylene. Complexation of 1 with Ru(CH3CN)4Cl2 and subsequent reaction with 4,4’-dimethyl-2,2’-bipyridine afforded an octahedral Ru(II) tris-diimine complex, in which a well-defined axis running through the terminal anisyl substituents and the central metal has been created, as shown by an X-ray molecular structure analysis.  相似文献   

11.
A series of Cu(I) mixed-ligand complexes containing dmp (2,9-dimethyl-1,10-phenanthroline) and one of simple diphosphine ligands (Ph2P(CH2)nPPh2) were prepared. Among the complexes, [Cu(dppp)(dmp)]PF6 (n=3) and [Cu2(dppb)2(dmp)2](PF6)2 (n=4) were characterized by X-ray structure analyses. The dppp complex has been characterized as a mononuclear complex, while [Cu2(dppb)2(dmp)2]2+ exists as a dinuclear complex in which two dppb ligands bridge between the two Cu(I) atoms. Although the distorted tetrahedral structures around the central metals of the two complexes are similar, the P-Cu-P angles are different between the two complexes. All of the series of complexes show photoluminescence in solution, and the intensity of the luminescence increases with n (n=2-4). The non-radiative rate constants of the complexes decrease markedly with n although radiative rate constants of the complexes are similar.  相似文献   

12.
Two new Ru complexes containing the 1,10-phenanthroline (phen) and 1,4,7-trithiacyclononane ([9]aneS3, SCH2CH2SCH2CH2SCH2CH2) ligands of general formula [Ru(phen)(L)([9]aneS3)]2+ (L = MeCN, 3; L = pyridine (py), 4) have been prepared and thoroughly characterized. Structural characterization in the solid state has been performed by means of X-ray diffraction analyses, which show a distorted octahedral environment for a diamagnetic d6 Ru(II), as expected. 1H NMR spectroscopy provides evidence that the same structural arrangement is maintained in solution. Further spectroscopic characterization has been carried out by UV-vis spectroscopy where the higher acceptor capability of MeCN versus the py ligand is manifested in a 9-15-nm blue shift in its MLCT bands. The E1/2 redox potential of the Ru(III)/Ru(II) couple for 3 is anodically shifted with respect to its Ru-py analogue, 4, by 60 mV, which is also in agreement with a higher electron-withdrawing capacity of the former. The mechanism for the reaction Ru-py + MeCN--> Ru-MeCN + py has also been investigated at different temperatures with and without irradiation. In the absence of irradiation at 326 K, the thermal process gives kinetic constants of k2 = 1.4 x 10(-5) s(-1) (DeltaH(++) = 108 +/- 3 kJ mol(-1), DeltaS(++) = -8 +/- 9 J K(-1) mol(-1)) and k-2 = 2.9 x 10(-6) s(-1) (DeltaH(++) = 121 +/- 1 kJ mol(-1), DeltaS(++) = 18 +/- 3 J K(-1) mol(-1)). The phototriggered process is faster and consists of preequilibrium formation of an intermediate that thermally decays to the final Ru-MeCN complex with an apparent rate constant of (k1Khnu)app = 1.8 x 10(-4) s(-1) at 304 K, under the continuous irradiation experimental conditions used.  相似文献   

13.
Some metal-ion-complexing properties of the ligand 2-(pyrid-2'-yl)-1,10-phenanthroline (MPP) are reported. MPP is of interest in that it is a more preorganized version of 2,2';6,2'-terpyridine (tpy). Protonation constants (pK(1) = 4.60; pK(2) = 3.35) for MPP were determined by monitoring the intense π-π* transitions of 2 × 10(-5) M solutions of the ligand as a function of the pH at an ionic strength of 0 and 25 °C. Formation constants (log K(1)) at an ionic strength of 0 and 25 °C were obtained by monitoring the π-π* transitions of MPP titrated with solutions of the metal ion, or 1:1 solutions of MPP and the metal ion were titrated with acid. Large metal ions such as Ca(II) or La(III) showed increases of log K(1) of about 1.5 log units compared to that of tpy. Small metal ions such as Zn(II) and Ni(II) showed little increase in log K(1) for MPP compared to the tpy complexes, which is attributed to the presence of five-membered chelate rings in the MPP complexes, which favor large metal ions. The structure of [Cd(MPP)(H(2)O)(NO(3))(2)] (1) is reported: monoclinic, P2(1)/c, a = 7.4940(13) ?, b = 12.165(2) ?, c = 20.557(4) ?, β = 96.271(7)°, V = 1864.67(9) ?(3), Z = 4, and final R = 0.0786. The Cd in 1 is seven-coordinate, comprising the three donor atoms of MPP, a coordinated water, a monodentate, and a bidentate NO(3)(-). Cd(II) is a fairly large metal ion, with r(+) = 0.96 ?, slightly too small for coordination with MPP. The effect of this size matching in terms of the structure is discussed. Fluorescence spectra of 2 × 10(-7) M MPP in aqueous solution are reported. The nonprotonated MPP ligand fluoresces only weakly, which is attributed to a photoinduced-electron-transfer effect. The chelation-enhanced-fluorescence (CHEF) effect induced by some metal ions is presented, and the trend of the CHEF effect, which is Ca(II) > Zn(II) > Cd(II) ~ La(III) > Hg(II), is discussed in terms of factors that control the CHEF effect, such as the heavy-atom effect.  相似文献   

14.
The saccharinato complexes [Zn(phen)2(sac)(H2O)]sac (1) and [Zn(sac)(dmp)(H2O)](sac) (2), where phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, and sac =saccharinato ion/ligand, were synthesized by the reaction of [Zn(sac)2(H2O)4] · 2H2O with ligands and have been characterized by elemental analysis, IR, and 1H NMR spectroscopies. Conductivity of complexes was measured in DMSO. Compound 1 is characterized by single crystal X-ray diffraction and compared with some isomorphous zinc-saccharinate complexes reported previously. Complex 1 crystallizes in the triclinic system, space group P 1 , with Z = 2, and consists of alternating slightly distorted octahedral [Zn(phen)2(sac)(H2O)]+ and noncoordinated saccharinate. The zinc bound aqua is hydrogen bonded to an oxygen of carbonyl in the saccharinate ligand and the SO2 group in the saccharinate counter-ion from an adjacent molecule. Intermolecular and intramolecular hydrogen bonds and C–H ··· O and C–H ··· N short contacts lead to a 3-D network.  相似文献   

15.
A planar bis-dipyrid-2'-yltriazine (bis-dpt) bridging ligand forms dinuclear Ru(II) complexes able to store up to eight electrons upon electrochemical reduction.  相似文献   

16.
In order to monitor the progression of the synthesis and the separation of novel mixed-ligand iron complexes containing 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione, and NCS- as ligands all products were mass analyzed by electrospray ionization ion trap MS/MS. The spectra of methanol (MeOH), acetonitrile (ACN), water, and ethanol (EtOH) solutions were collected and the results were compared. It was detected under applied electrospray ionization mass spectrometry (ESI-MS) conditions that MeOH, water, and EtOH formed solvent clusters around the free or complexed 1,10-phenanthroline-5,6-dione. Owing to the solvent-ligand hydrogen-bond formation, the solvent-ligand clusters were formed in the polar protic solvents. The number of protic solvent molecules per complex ion in cluster depended on the number of 1,10-phenanthroline-5,6-dione ligands in the complex ion. Unlike MeOH, EtOH, or water, ACN was not involved in the formation of the solvent clusters with the iron complexes containing 1,10-phenanthroline-5,6-dione as ligand. We also showed that the NCS- group under certain solvent conditions served as a bidentate ligand.  相似文献   

17.
18.
The redox properties of a series of [Ru(phen)2(py)X]n+ cations (X = pyridine, NH3, Cl, Br, I, CN, SCN, N3 and NO2) have been investigated in acctonitrile. Two reversible reduction steps are seen at ? 1.35 and ? 1.6 V vs Ag/AgCl; the invariance of these processes with X-group is indicative of electron addition to molecular orbitals mainly of phenanthroline ligand π* origin. Irreversible multi-electron reductions follow below ? 2.20 V. The Ru(II)/Ru(III) couple is seen as a reversible wave near + 0.8 V vs the normal hydrogen electrode, from calibration with ferrocene, except in the cases of the NO2 and SCN complexes, where rapid reactions involving these ligands occur.  相似文献   

19.
D. C. polarography and cyclic voltammetry were used for investigating the reduction processes of the tris(1,10-phenanthroline)cobalt(II) and bis(2,9-dimethyl-1, 10-phenanthroline)-cobalt(II) perchlorates in 0.1 M solutions of tetraethylammonium perchlorate in acetonitrile. The first complex gave a four-step reduction wave; the first two steps were found to be diffusion controlled and reversible reductions from Co(phen)+ to Co(phen)3+ to Co(phen) to Co(phen;) occured. The second complex gave a six-step reduction wave; the first three steps were found to be diffusion controlled and were to be considered as successive reversible reductions from Co(2, 9dm-phen)+ to Co(2, 9dmphen), from Co(2, 9dmphen) to Co(2, 9dmphen)2 and from Co(2, 9dmphen)2 to Co(2, 9dmphen).  相似文献   

20.
The 90K solid-state structures, room temperature absorption, and room temperature and 17 K emission spectra of seven different salts of [Cu(I)(bfp)(2)](+) (bfp = 2,9-bis(trifluoromethyl)-1,10-phenanthroline) have been determined. To quantify the distortion of the Cu coordination environment, a distortion parameter zeta is defined that is a combined measure of the flattening, rocking, and wagging distortions of the complex cations. In general, the distortion in the (bfp) cations is less than found previously for Cu(I)(dmp)(2) (dmp = 2,9-dimethyl-1,10-phenanthroline) salts, in particular the flattening is reduced because of the bulkier 2,9-substituents. The 17 K lifetimes range up to 1.8 mus in the series of solids examined and, with the marked exception of the BF(4)(-) salt, correlate linearly with the distortion parameter zeta. The emission wavelength red-shifts with decreasing lifetime, which implies that an increased ground-state distortion is associated with a smaller energy gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号