首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurement of fluctuating velocity and pressure by a static-pressure probe and a hot-wire probe was performed in the near wake of a circular cylinder, in order to strengthen reliability of the measurement technique. Effect of geometry of the static-pressure probe was systematically investigated, and validity of the measurement results was addressed by quantitative comparison with reference data by a large-eddy simulation. Interference between the probes was found to mainly depend on the diameter of the pressure probe and only weakly on the length. A certain time lag between the velocity and pressure signals was detected in the experiment, and the measurement results of velocity–pressure correlation $\overline{up}$ and $\overline{vp}$ obtained with the correction of the time lag were in good agreement with the computational results. It was also found that the measurement of $\overline{vp}$ is extremely sensitive to a small time lag between the velocity and pressure signals, while that of $\overline{up}$ is not.  相似文献   

2.
The laws governing the degeneracy of the pulsation fields characterizing the velocity, temperature, and concentration of a nonconservative impurity on passing along the axis of the axisymmetrical wake of a gas-enveloped solid are presented. Consideration is based on the semiempirically closed balance equations of the pulsation parameters [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 145–146, September–October, 1974.  相似文献   

3.
A two-frame PIV (particle image velocimetry) technique was used to investigate the flow characteristics of a complicated propeller wake influenced by a hull wake. As the propeller is significantly affected by the hull wake of a marine vessel, measurements of the propeller wake under the hull wake are certainly needed for more reliable validation of numerical predictions. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both the upper and the lower propeller planes. The unstable propeller wake caused by the ship’s hull was interpreted in terms of turbulent kinetic energy (T KE) to obtain useful information for flow modeling. The unstable or unsteady phenomenon in the upper propeller wake was identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure with turbulent kinetic energy. Strong unsteadiness appeared in the second and higher modes, largely affecting the downstream flow characteristics. The first eigenmode can be used to appropriately identify the tip vortex positions even in the unstable downstream region, which are helpful for establishing reliable wake modeling.  相似文献   

4.
5.
The near wake structure of a square cross section cylinder in flow perpendicular to its length was investigated experimentally over a Reynolds number (based on cylinder width) range of 6700–43,000. The wake structure and the characteristics of the instability wave, scaling on θ at separation, were strongly dependent on the incidence angle () of the freestream velocity. The nondimensional frequency (Stθ) of the instability wave varied within the range predicted for laminar instability frequencies for flat plate wakes, jets and shear layers. For = 22.5°, the freestream velocity was accelerated over the side walls and the deflection of the streamlines (from both sides of the cylinder) towards the center line was higher compared to the streamlines for = 0°. This caused the vortices from both sides of the cylinder to merge by x/d 2, giving the mean velocity distribution typical of a wake profile. For = 0°, the vortices shed from both sides of the cylinder did not merge until x/d 4.5. The separation boundary layer for all cases was either transitional or turbulent, yet the results showed good qualitative, and for some cases even quantitative, agreement with linearized stability results for small amplitude disturbances waves in laminar separation layers.  相似文献   

6.
7.
8.
9.
A wake behind a circular cylinder at Reynolds number 850–1700 was visualized by the smoke-wire method. The observations of the How together with the results of quantitative measurements, such as various velocity correlation coefficients, illustrated the formation process of spoon-shaped large eddies in the region 90 ⩽x/d⩽ 230 attained through the deformation and rearrangement of the regular Karman vortices. A spoon vortex was likely to pair with the counterpart on the opposite side of the wake. The large-scale bulges of the turbulent and non-turbulent interface of the wake were shown to correspond to these spoon vortices.These results indicate that some coherent structures are organized by rearrangement and deformation of initially regular vortices in turbulent flow.  相似文献   

10.
Three-dimensional vortical structures have been measured in a circular-cylinder wake using particle imaging velocimetry (PIV) for the Reynolds number range of 2×103 to 1×104. The PIV was modified, compared with the conventional one, in terms of its light sheet arrangement to capture reliably streamwise vortices. While in agreement with previous reports, the presently measured spanwise structures complement the data in the literature in the streamwise evolution of the near-wake spanwise vortex in size, strength, streamwise and lateral convection velocities, shedding new light upon vigorous interactions between oppositely signed spanwise structures. The longitudinal vortices display mushroom patterns in the (x, z)-plane in the immediate proximity to the cylinder. Their most likely inclination in the (x, y)-plane is inferred from the measurements in different (x, z)-planes. The longitudinal vortices in the (y, z)-plane show alternate change in sign, though not discernible at x/d > 15. They decay in the maximum vorticity and circulation rapidly from x/d = 5 to 10 and slowly for x/d > 10, and are further compared with the spanwise vortices in size, strength and rate of decay.  相似文献   

11.
Flow structure of wake behind a rotationally oscillating circular cylinder   总被引:1,自引:0,他引:1  
Flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally. The dominant parameters affecting this experiment are the Reynolds number (Re), oscillation amplitude (θA), and frequency ratio FR=ff/fn, where ff is the forcing frequency and fn is the natural frequency of vortex shedding. Experiments were carried out under conditions of Re=4.14×103, 0°θA60° and 0.0FR2.0. Rotational oscillation of the cylinder significantly modified the flow structure in the near-wake. Depending on the frequency ratio FR, the cylinder wake showed five different flow regimes, each with a distinct wake structure. The vortex formation length and the vortex shedding frequency were greatly changed before and after the lock-on regime where vortices shed at the same frequency as the forcing frequency. The lock-on phenomenon always occurred at FR=1.0 and the frequency range of the lock-on regime expanded with increasing oscillation amplitude θA. In addition, the drag coefficient was reduced when the frequency ratio FR was less than 1.0 (FR<1.0) while fixing the oscillation amplitude at θA=30°. When the oscillation amplitude θA was used as a control parameter at a fixed frequency ratio FR=1.0 (lock-on regime), the drag reduction effect was observed at all oscillation amplitudes except for the case of θA=30°. This type of active flow control method can be used effectively in aerodynamic applications while optimizing the forcing parameters.  相似文献   

12.
13.
开缝钝体尾迹的拟序结构   总被引:1,自引:0,他引:1  
弄清开缝钝体尾迹的拟序结构是认识其火焰稳定机理的基础。在雷诺数R e为470000条件下,采用RNGk-ε模型对通道内的开缝钝体尾迹进行数值模拟来分析大涡尺度的拟序结构。模拟结果显示,偏向一侧的中缝流将近尾分成主回流区和次回流区,主回流区的漩涡脱落激发扰动,引起近尾的绝对不稳定。并提出单涡突然置于两剪切层间的漩涡脱落机理来解释拟序结构不稳定特性。为了验证上述结论,在闭式风洞中采用激光粒子测速技术(P IV)对开缝钝体的尾迹进行了实验研究,其结果与数值分析较好地吻合。  相似文献   

14.
Marine animals and micro-machines often use wiggling motion to generate thrust. The wiggling motion can be modeled by a progressive wave where its wavelength describes the flexibility of wiggling animals. In the present study, an immersed boundary method is used to simulate the flows around the wiggling hydrofoil NACA 65-010 at low Reynolds numbers. One can find from the numerical simulations that the thrust generation is largely determined by the wavelength. The thrust coefficients decrease with the increasing wavelength while the propulsive efficiency reaches a maximum at a certain wavelength due to the viscous effects. The thrust generation is associated with two different flow patterns in the wake: the well-known reversed Karman vortex streets and the vortex dipoles. Both are jet-type flows where the thrust coefficients associated with the reversed Karman vortex streets are larger than the ones associated with the vortex diploes.  相似文献   

15.
We present synchronized time-resolved measurements of the wing kinematics and wake velocities for a medium sized bat, Cynopterus brachyotis, flying at low-medium speed in a closed-return wind tunnel. Measurements of the motion of the body and wing joints, as well as the resultant wake velocities in the Trefftz plane are recorded at 200 Hz (approximately 28–31 measurements per wing beat). Circulation profiles are found to be quite repeatable although variations in the flight profile are visible in the wake vortex structures. The circulation has almost constant strength over the middle half of the wing beat (defined according the vertical motion of the wrist, beginning with the downstroke). A strong streamwise vortex is observed to be shed from the wingtip, growing in strength during the downstroke, and persisting during much of the upstroke. At relatively low flight speeds (4.3 m/s), a closed vortex structure behind the bat is postulated.  相似文献   

16.
The pattern of disturbances arising during the motion of a strip along a horizontal surface in a continuously stratified fluid with identified upstream and attached internal waves, boundary layers, and edge singularities is calculated in the liner approximation. The flow pattern behind a flat plate moving with a constant velocity in a continuously stratified fluid is studied with the use of the optical schlieren technique; transformation of waves and finely structured elements of the flow with increasing plate velocity is analyzed. The calculated and experimentally observed patterns of internal waves at low velocities are demonstrated to be in good agreement. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 77–91, November–December, 2007.  相似文献   

17.
The unsteady flow field past a backward-facing step in a rectangular duct is investigated by adopting time-resolved particle image velocimetry (PIV) in the Reynolds number range of 2,640–9,880 based on step height and the inlet average velocity. The PIV realizations are subjected to post-processing techniques, namely, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). At low Reynolds numbers, the second spatial POD modes indicate the presence of the shear layer mode, whereas this feature shifts to higher modes at higher Reynolds numbers. The corresponding temporal modes are Fourier-transformed to obtain the dominant frequency, whose Strouhal number corroborates the above observation. Short-time windows in the transverse velocity component along the shear layer are selected to investigate the temporal stability of the flow field by DMD to quantify the growth rate of the shear layer mode. The higher harmonics of this mode are also observed to grow, albeit at lesser rate. By relating to POD analysis, the most energetic structures were found to correspond to the unstable modes. The correlation between these unstable DMD modes and the Fourier-filtered flow fields for the same frequencies indicate better match for the lower operating Reynolds number case as compared to higher ones. The spatial stability analysis demonstrates the growth of the shear layer vortices, which is combined with the temporal stability analysis to evaluate the phase velocity of the identified shear layer structures. The calculated phase velocity magnitude of the shear layer is found to be reasonably below the local velocity as expected.  相似文献   

18.
The separated shear layer in the near wake of a circular cylinder was investigated using a single hot wire probe, with special attention given to the shear layer instability characteristics. Without end plates to force parallel vortex shedding, the critical Reynolds number for the onset of the instability was 740. The present data, together with all previously published data, show that the ratio of the instability frequency fsl to the vortex shedding frequency fv varies as Re0.65, which is in agreement with the Re0.67 dependence obtained by Prasad and Williamson [1997, J Fluid Mech 333:375–402]. However, the distribution of fsl/fv and the spectra of the longitudinal velocity fluctuation (u) suggest that, on either side of Re=5,000, the shear layer exhibits lower and upper subcritical regimes, in support of the observations by Norberg [1987, publication no. 87/2, Chalmers University of Technology, Sweden] and Prasad and Williamson [1997, J Fluid Mech 343:235–265]. The spectra of u provide strong evidence for the occurrence of vortex pairing in wake shear layers, suggesting that the near wake develops in a similar manner to a mixing layer.  相似文献   

19.
This work experimentally investigates the near-wake flow structure behind an open-slit V gutter at airflow speeds between 1 m/s and 20 m/s. With the aid of Schlieren photography and a Dantec three-beam, two-component laser-Doppler anemometry system, the phenomena of vortex shedding and flow recirculation behind the flameholder are well investigated. The results indicate that the interaction between the flow penetrating through the open slit and the shear layer results in an asymmetric wake flow structure. The lower shear layer develops more stably and smoothly than the upper shear layer. Besides, the vortex formation along the lower wing is delayed and at a location farther downstream. The size of the entire recirculation zone is enlarged, and its center shifts toward one of the two wings. Measurements of wake pressure distribution show that the open-slit V gutter generates higher back pressure and thus induces less drag force than the regular V gutter. Moreover, the maximum values of the pressure fluctuation of the wake flow behind the open-slit V gutter reduce 27% and 9%, for the upper side and the lower side, respectively, much lower than those of the regular V gutter. In general, the application of mass bleed from the open-slit V gutter favors both the flame-holding mechanism and the suppression of the flow-induced oscillation.  相似文献   

20.
The effect of mini-flaps on the vortex structure of the near wake flow behind a model of a half-wing, rectangular in plan, is investigated. In a subsonic wind tunnel the time-average flow parameters are measured in several sections behind a model with flaps mounted on both upper and lower surfaces near the trailing edge. The wake flow parameters are compared with those for a model with no flaps. The considerable effect of the flaps on the flow structure in the viscous core of a tip vortex formed behind the model half-wing is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号