首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Secondary ion mass spectrometry (SIMS) exhibits a unique potential for the measurement of two-and three-dimensional distributions of trace elements in advanced materials, which is demonstrated on relevant technological problems. One example is the characterization of high purity iron. With this material segregation experiments have been performed and the initial and final distribution of the trace elements have been measured. Another example is the investigation of the corrosion behaviour of high purity chromium. Samples oxidized with (16)O and (18)O have been measured to explain the growing and adhesion of the oxide layer. All imaging techniques generate a vast quantitiy of data. In order to extract the important information the assistance of chemometric tools is essential. Detection of chemical phases by classification using neural networks or de-noising of scanning-SIMS images by wavelet-filtering demonstrates the increase of the performance of analytical imaging techniques.  相似文献   

2.
Americium is an important actinide element having versatile applications based on its alpha and gamma emissions. Multi-element determination of radioactive samples using ICP-AES technique may be affected by the presence of americium due to its rich emission spectra. With a view to characterize plutonium based fuels containing americium for trace metals by ICP-AES technique accurately, a high purity 241Am (using a separation procedure developed in our laboratory) was prepared. To ascertain its chemical purity it is essential to determine its impurity contents accurately. Instrumental neutron activation analysis (INAA), being a sensitive multi-elemental technique, was employed to determine the concentrations of impurities in purified 241Am. Detection limits for the common elements and rare earth elements have also been determined. Comparison is made with the analytical data obtained by the ICP-AES method.  相似文献   

3.
Activation analysis in general and mainly reactor neutron activation analysis (NAA) has been used extensively for measuring trace elements in high purity materials, particularly semiconductor materials. The advantages of NAA in determination of trace elements differ from one semiconductor material to another. For all of them the inherent properties of activation analysis especially those of non contamination with the reagents, low blanks and high sensitivity are the reasons for the choice of NAA as the main analytical procedure. These inherent properties are essential for analysis of high-purity materials where concentrations of ppb's and sub ppb's have to be measured. NAA is specially suitable for the determination of trace elements in silicon due to the very short lived very low activity induced by neutron reaction in silicon. This enables easy instrumental (i.e. without chemical separations) determination of trace elements in silicon. In the HFR reactor at Peten, Netherlands, a special facility was constructed for irradiation of silicon samples of Philips, in which silicon wafers of up to 15 cm diameter can be irradiated with 4 × 1013n. cm?2. sec?1 and the irradiation is done for 72–96 hours. using large Ge(Li) detectors (100 to 150cc) and long counting time (8–16 hours) they measured 22 elements in concentrations below ppb and 10 others between ppb and 300 ppm. Trace elements in germanium have been determined both instrumentally after very long decay time (100 days) or after short decay time removing the activities from the matrix by chemical separation. Trace elements in GaAs are determined only after chemical separtion. Several other semiconductor material such as Sc, Te, GaP and CuInS2 were also determined by NAA. Some trace elements cannot be determined by neutron activation. Carbon, nitrogen and oxygen are determined by activation with protons, alphas or 3He particles. Boron and hydrogen are determined by prompt emission induced by charged particle activation, which gives not only the total concentration but also the depth profile. Carbon, nitrogen, oxygen and phosphorus were also determined by prompt proton activation analysis. The environmental samples studied by activation analysis can be divided into three categories: atmospheric aerosols, water samples and solid wastes. NAA of atmospheric aerosols have been used for their posible toxicological hazards, their source identification and for studies of atmospheric transport processes.  相似文献   

4.
A radiochemical neutron activation analysis using solvent extraction has been applied for the determination of trace impurities in high purity nickel. Because of the high activity of58Co produced by the nuclear reaction,58Ni(n,p)58Co, cobalt should be separated from the impurities. Removal of cobalt from the other trace elements in the aqueous acidic solution containing 1M thiocyanate ion (KSCN) was achieved by extraction with 1M2-benzylpyridin (BPy) in benzene. From the result of tracer experiments, cobalt was completely separated from most other elements except Fe, Mo and Zn. To determine the experimental accuracy, NIST SRM 673 nickel oxide was analyzed and the results agreed well within 10% deviation. This established radiochemical method was applied to the analysis of high purity nickel samples.  相似文献   

5.
Applying a recently developed three dimensional SIMS imaging technique major differences in the distribution of trace elements in ultra high purity Mo and W have been found. In the electron beam melted material severe grain boundary segregation of trace elements have occurred whereas in the hot pressed material trace elements have been present as precipitates with a size of 5–15 m. Guided by the results of the 3D-SIMS images and the advantages of the sintering process a material with homogeneous distribution of trace elements has been developed and characterised. To test the applicability for the microelectronics industry, sputtering targets have been manufactured out of this new material and layers with a thickness of 350 nm have been sputterdeposited on silicon. The quality of these layers, with respect to particle emission and the distribution of trace elements, was evaluated by EPMA and 3D-SIMS imaging. Further improvement of the sintering process led to a material with a completely homogeneous distribution of C, H, N, O and S to minimise the outgassing and diffusion of impurities.Abbreviations BSE Back scattered electron - EPMA Electron probe micro analysis - GAAS Graphite furnace atomic absorption spectrometry - GDMS Glow discharge mass spectrometry - ICP-AES Inductively coupled plasma atomic emission spectrometry - ICP-MS Inductively coupled plasma mass spectrometry - SIMS Secondary ion mass spectrometry - ULSI Ultra large scale integration  相似文献   

6.
Instrumental and radiochemical techniques have been developed for the analysis of samples of quartz-adularia veins from the epithermal gold-silver deposit Milogradovka. The optimal separation conditions of the Pt, Au, Ir, Re, Ag from non-noble metals have been determined in A400 MB in the Cl? form0.2 M HCl chromatographic system. The concentrations of the Pt, Au, Ir, Re and 36 other trace elements have been measured with combination of the instrumental and radiochemical neutron activation analysis techniques. The concentration range of the determined elements is from 2 × 10?2 to 7.5 × 103 mg kg?1. The study has been confirmed the presence of platinum mineralization of the epithermal deposit Milogradovka.  相似文献   

7.
This paper describes a quantitative measurement of trace elements (Na, Li) in high purity zirconium dioxide powder using liquid electrode plasma optical emission spectrometry (LEP-OES). Conventionally, for such type of measurements, inductively coupled plasma optical emission spectrometry (ICP-OES) is frequently employed. The detection limits of elements in zirconium by ICP-OES are degraded due to the spectra interference between the trace elements and zirconium of the matrix, because zirconium is a line rich element in spectra obtained by ICP-OES. LEP-OES is an elemental analysis method developed by the authors. The measurement principle is simple, as follows. Sample solution is put into a narrow channel on a small cuvette and voltage pulse is applied from both ends of the channel. At the center of the channel which is made narrower, the voltage and current are concentrated there, and plasma is generated. From the emission of the plasma, the quantitative analysis of the elements in the solution is achieved. The LEP-OES has the property that the emission of zirconium is relatively weak, so that highly sensitive measurement of trace elements in zirconium matrix can be conducted without interference. Sample solution is prepared by dissolving high purity zirconium dioxide powder and trace amounts of Na or Li with sulfuric acid. The voltage dependence and the pulse width dependence of optical emission spectra are also investigated. With increase of the voltage or the pulse width, the ratio of emission intensities of Na to those of hydrogen increases. This suggests that the ratio of sensitivity of two elements is variable, that means the element selectivity is controllable to some extent by the measurement conditions in LEP-OES. In the case of Na and H, the ratio can be controlled from 7.4 to 21.6%. Finally, the detection limits (3S.D.) of the trace elements, Na and Li, in 4000 μg g−1 zirconium dioxide aqueous solution are found to be 0.02 and 0.133 μg g−1, respectively. These values correspond to 5 μg g−1 for Na, 33.25 μg g−1 for Li in original high purity zirconium dioxide powder. The correlation coefficient of calibration curve was 0.995 for Na, 0.985 for Li. Those are comparable to the literature values of detection limits using ICP-OES.  相似文献   

8.
This work describes a streamlined approach to the separation and purification of trace uranium and plutonium in environmental swipe samples that contain a small amount of collected bulk material. We describe key modifications to conventional techniques that result in a relatively rapid, safe, cost-effective, and efficient U and Pu separation process. Simulated samples were produced by loading appropriate 235U, 238U, and 240Pu onto high purity cotton swipes. Uranium concentration and isotopic composition were measured by multi-collector inductively coupled mass spectrometry. Corresponding plutonium measurements were conducted with a three stage thermal ionization mass spectrometer. Quantitative U and Pu recoveries were observed with this method.  相似文献   

9.
Wet deposition samples from two locations in the Adirondack region of New York were analyzed for trace elemental composition by instrumental neutron activation analysis. Annual fluxes of the measured species were determined by precipitation-weighted and linear-regression methods. Despite several episodes of high deposition fluxes, the cumulative areal wet deposition of trace elements increased fairly linearly (r 2 > 0.9) over the two year sampling period at both sites. This implies that short duration sampling programs may be used to estimate long-term fluxes and cumulative wet deposition impacts. Based on the magnitude of their fluxes, the measured species have been divided into four groups: acidic anions, electroneutral balancing cations, and minor and trace elements of anthropogenic origin.  相似文献   

10.
Two representative titaniferous magnetite samples procured from Moulabhanj, Orissa, India have been studied by PIXE, EDXRF, Mössbauer spectroscopy, and XRD techniques. Major iron-bearing phases identified in the samples by Mössbauer spectroscopy and XRD are magnetite, hematite, ferrous ilmenite and ferric ilmenite. The Fe2+/Fe3+ ratio and the relative percentages of different minerals were determined from the resonance areas of Mössbauer spectra. Quantitative multielemental analysis was carried out by energy dispersive X-ray fluorescence (EDXRF) and proton induced X-ray emission (PIXE). Nineteen minor and trace elements have been quantified by EDXRF whereas by PIXE eighteen elements have been analyzed quantitatively. Concentrations of trace elements determined by EDXRF and PIXE were used in interpreting the physico-chemical condition of the depositional basin.  相似文献   

11.
Problems on the quantitative analyses of impurities in secondary ion mass spectrometry (SIMS) were revealed by analysing standard samples. One problem is the interference confirmed when 27Al16O, 63Cu and 67Zn16O negative ions were measured, which can be avoided by measuring a high‐resolution mass spectrum. Another problem is that light elements such as hydrogen can be measured accurately only after using a cooling system to reduce the background intensity. These remedies were applied in the quantitative analysis of single‐crystal ZnO grown by hydrothermal and vapour transport techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
For the instrumental neutron activation analysis of trace impurities in high purity silicon wafer, a modified single comparator method has been applied. The energy distribution of the neutrons at the irradiation position was measured using the two flux monitors, Au and Co, and elemental contents were calculated using the silicon matrix in the wafer as a comparator. This has advantage of reducing the cross contamination from an external monitor during sample preparation and irradiation, the uncertainties from the non-homogeneity of the neutron flux and the error on the weight of comparators. Determination limits for 49 elements were presented under the condition of 72 hours irradiation at a neutron flux of 3.7·1013 n·cm-2·s-1 and 4000 s measurement. The analytical results obtained by this method and the conventional single comparator method were compared and were found to agree well within 5%.  相似文献   

13.
Heavy ion activation has been studied as a method for determining hydrogen. The reactions used [e.g.1H(7Li, n)7Be] are the “inverse” of well known reactions [e.g.7Li(p, n)7Be]. Nuclear activation parameters for the ion beams of interest (7Li2+,10B2+) have been studied. The analytical feasibility is demonstrated with the determination of hydrogen in titanium at the 100 and 30 ppm levels with relative precisions of 8 to 10%. Detection limits in titanium are in the 0.1 to 0.5 ppm range. Heavy ion bombardment is also accompanied by the emission of characteristic X-rays (“atomic” activation). The parameters governing X-ray emission and background production have been investigated. Experimental K and L X-ray yields from thick targets have been measured for many elements excited by On+ beams of 0.5 to 7 MeV/amu and Kr7+ beams of 0.5 to 1 MeV/amu. The simultaneous determination of trace elements at levels of 10 to several 100 ppm in microsamples (∼10−5 g) is demonstrated on biological specimens. K and L X-ray yields and corresponding detection limits have also been measured with the7Li2+ and10B2+ beams used for the nuclear activation of hydrogen. With these beams (∼6 MeV/amu) simultaneous nuclear and atomic activation is possible, yielding an unusual multielement trace analysis capability covering hydrogen and medium and high Z elements.  相似文献   

14.
In this communication we show that two nuclear methods permit a non-destructive determination of major, minor and trace elements in three important “archaeological” metals: gold, silver, copper and alloys. With the first one, neutron activation analysis with a252Cf neutron source, we can perform a fast and accurate determination of three important elements of the coin's composition, viz. gold, silver and copper. With the second one, proton activation analysis, we can determine trace elements at ppm level in gold, silver and copper metals. Using these two techniques of activation analysis two important numismatic problems can be studied: the evolution of the fineness; characterization or differentiation by the trace elements the metal used to mint the coin. One example of each numismatic problem is also given.   相似文献   

15.
A novel method was developed for the direct determination of trace quantities of rare earth elements (REEs) in high purity erbium oxide dissolved in nitric acid by inductively coupled plasma mass spectrometry (ICP-MS) in this work. The mass spectra overlap interferences arose from Er matrix on the neighbouring and monoisotopic analytes of 165Ho(100) and 169Tm(100) were eliminated by adjusting instrumental peak resolution value from 0.7 to 0.3 amu. The matrix suppression effect of Er on the ion peak signals of REEs impurities was effectively compensated with spiking In as internal standard element. The limit of quantitation (LOQ) of REEs impurities was from 0.0090 to 0.025 μg g−1, the recoveries of spiked sample for REEs were found to be in the range of 90.3-107% through using the proposed method and relative standard deviation (R.S.D.) varied between 2.5% and 6.7%. The novel methodology had been found to be suitable for the direct determination of trace REEs impurities in 99.999-99.9999% high purity Er2O3 and the results obtained from this method keep in good agreement with that acquired from high resolution ICP-MS.  相似文献   

16.
The purity of several economically important metals is routinely verified by a reference material. Further, it is essential to provide a means of maintaining the consistency between laboratories and on disseminating the accurate value.This work, developed within an activity of certification promoted by EURATOM, reports the results on impurity determination (Ag, As, Cd, Ni, Sb, Sn, Te and Zn) at trace (µg g− 1) and ultra-trace (ng g− 1) levels in three metallurgical lead samples (99.99% of purity). Among the different analytical techniques available for the characterization, the use of a nuclear technique, i.e. Instrumental Nuclear Activation Analysis, has allowed to reach high sensitivity and to obtain accurate values for these elements.The irradiations were performed in the rotating rack (Lazy Susan) and in the central channel of the Triga Mark II reactor reaching a total integrated flux of 9.36 × 1017 n cm− 2 and 2 × 1019 n cm− 2, respectively.The results about the determination of elements such as Ni, Sn, Te and Zn present at ultra-trace levels (ng/g), are showed and discussed. This task is very interesting for the radio-analytical and methodological implications: in fact, for analyzing them a radiochemical separation is involved and an anti-Compton gamma spectrometer is necessary due to their very low levels.  相似文献   

17.
Direct analysis of solid samples employing a laboratory assembled electrothermal atomic absorption spectrometer is demonstrated to be a feasible approach for determination of trace elements in plant tissue and hair samples for special applications in plant physiology and biomedical research. As an example, the kinetics of Cr uptake by cabbage and its distribution have been measured as a function of chromium speciation in the nutrient solution. Further, longitudinal concentration gradients of Cr, Pb and Cd have been measured in hair of various population groups exposed to different levels of these elements in ambient and/or occupational environments. The techniques are validated for the determination of these trace elements by neutron activation analysis, dissolution atomic absorption spectrometry and by analysis of certified reference materials. Slurry sample introduction is found appropriate for routine trace element determination and in homogeneity testing. Direct sample introduction is indispensable in the analysis of very small (< 1 mg) tissue biopsy samples in the determination of trace element distributions.  相似文献   

18.
The investigation of the distribution of trace elements in two chromium samples with different corrosion resistivity is reported. The concentration of the trace elements in both samples is in the typical range of high purity chromium and did not explain the different behaviour in the corrosion test. To measure the three-dimensional distribution imaging secondary ion mass spectrometry (SIMS) was used. Fine details were measured by scanning SIMS because of the better resolution. An enrichment of nitrogen and carbon at the grain boundaries of the sample with lower corrosion resistivity was observed.  相似文献   

19.
 The content and the three dimensional distribution of impurities play an important role in the production process of high purity rhenium powder (99.99% purity grade) and for its further use as alloying and coating agent in high temperature applications. In this paper the characterization of raw Re granulate, Re powder, cleaned by heat treatment, Re coatings, produced by most common preparation methods (PVD and VPS) and PM Re by means of SIMS is presented. The analysis of the three dimensional distribution of trace elements is performed by 3D SIMS. The quantification of carbon, which was not possible with other analytical techniques as a result of the high volatility of Re2O7 until now, has been carried out by SIMS depth profile analysis. It is discussed if internal standards, produced by introduction of defined amounts of carbon soot to the Re powder lead to useful results.  相似文献   

20.
Elemental analysis of some herbal plants used in the ayurveda for curing of cardiovascular diseases has been performed using the techniques of neutron activation analysis and atomic absorption spectroscopy. The concentration of elements Mn, Na, K and Cl has been estimated by NAA using a252Cf neutron source and a high purity gemanium detector coupled to a multichannel analyzer, while the elements Ca, Cr, Co, Cu, Fe, Pb, Zn, Ni, Cd and Hg were analysed by AAS using a Perkin Elmer 3100 instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号