首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

2.
Black crystals of Np(PS(4)), Np(P(2)S(6))(2), K(11)Np(7)(PS(4))(13), and Rb(11)Np(7)(PS(4))(13) have been synthesized by the reactions of Np, P(2)S(5), and S at 1173 and 973 K; Np, K(2)S, P, and S at 773 K; and Np, Rb(2)S(3), P, and S at 823 K, respectively. The structures of these compounds have been characterized by single-crystal X-ray diffraction methods. Np(PS(4)) adopts a three-dimensional structure with Np atoms coordinated to eight S atoms from four bidentate PS(4)(3-) ligands in a distorted square antiprismatic arrangement. Np(PS(4)) is isostructural to Ln(PS(4)) (Ln = La-Nd, Sm, Gd-Er). The structure of Np(P(2)S(6))(2) is constructed from three interpenetrating diamond-type frameworks with Np atoms coordinated to eight S atoms from four bidentate P(2)S(6)(2-) ligands in a distorted square antiprismatic geometry. The centrosymmetric P(2)S(6)(2-) anion comprises two PS(2) groups connected by two bridging S centers. Np(P(2)S(6))(2) is isostructural to U(P(2)S(6))(2). A(11)Np(7)(PS(4))(13) (A = K, Rb) adopts a three-dimensional channel structure built from interlocking [Np(7)(PS(4))(13)](11-)-screw helices with A cations residing in the channels. The structure of A(11)Np(7)(PS(4))(13) includes four crystallographically independent Np atoms. Three are connected to eight S atoms in bicapped trigonal prisms. The other Np atom is connected to nine S atoms in a tricapped trigonal prism. A(11)Np(7)(PS(4))(13) is isostructural to A(11)U(7)(PS(4))(13). From Np-S bond distances and charge-balance, we infer that Np is trivalent in Np(PS(4)) and tetravalent in Np(P(2)S(6))(2) and A(11)Np(7)(PS(4))(13). Np exhibits a behavior intermediate between U and Pu in its thiophosphate chemistry.  相似文献   

3.
The first quaternary plutonium metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(3)Pu(PS(4))(2) (I), KPuP(2)S(7) (II), RbPuP(2)S(7) (III), and CsPuP(2)S(7) (IV). All four compounds crystallize in the monoclinic space group P2(1)/c with Z = 4. Compound I has cell parameters of a = 9.157(1) A, b = 16.866(2) A, c = 9.538(1), and beta = 90.610(3)degrees. Compound II has cell parameters of a = 9.641(1) A, b = 12.255(1) A, c = 9.015(1) A, and beta = 90.218(1)degrees. Compound III has cell parameters of a = 9.8011(6) A, b = 12.3977(7) A, c = 9.0263(5) A, and beta = 90.564(1)degrees. Compound IV has cell parameters of a = 10.1034(7) A, b = 12.5412(9) A, c = 9.0306(6) A, and beta = 91.007(1)degrees. Compound I is isostructural to a family of rare-earth metal thiophosphates and comprises bicapped trigonal prismatic PuS(8) polyhedra linked in chains through edge-sharing interactions and through thiophosphate tetrahedra. Compounds II-IV crystallize in a known structure type not related to any previously observed actinide thiophosphates and contain the (P(2)S(7))(4-) corner-shared bitetrahedral ligand as a structural building block. A summary of important bond distances and angles for these new plutonium thiophosphate materials is compared to the limited literature on plutonium solid-state compounds. Diffuse reflectance spectra confirm the Pu(III) oxidation state and Raman spectroscopy confirms the tetrahedral PS(4)(3-) building block in all structures.  相似文献   

4.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

5.
Wu Y  Bensch W 《Inorganic chemistry》2008,47(17):7523-7534
Four new quaternary alkali neodymium thiophosphates K 9Nd[PS 4] 4 ( 1), K 3Nd[PS 4] 2 ( 2), Cs 3Nd[PS 4] 2 ( 3), and K 3Nd 3[PS 4] 4 ( 4) were synthesized by reacting Nd with in situ formed fluxes of K 2S 3 or Cs 2S 3, P 2S 5 and S in appropriate molar ratios at 973 K. Their crystal structures are determined by single crystal X-ray diffraction. Crystal data: 1: space group C2/ c, a = 20.1894(16), b = 9.7679(5), c = 17.4930(15) A, beta = 115.66(1) degrees , and Z = 4; 2: space group P2 1/ c, a = 9.1799(7), b = 16.8797(12), c = 9.4828(7) A, beta = 90.20(1) degrees , and Z = 4; 3: space group P2 1/ n, a = 15.3641(13), b = 6.8865(4), c = 15.3902(13) A, beta = 99.19(1) degrees , and Z = 4; 4: space group C2/ c, a = 16.1496(14), b = 11.6357(7), c = 14.6784(11) A, beta = 90.40(1) degrees , and Z = 4. The structure of 1 is composed of one-dimensional (1) infinity{Nd[PS 4] 4} (9-) chains and charge balancing K (+) ions. Within the chains, eight-coordinated Nd (3+) ions, which are mixed with K (+) ions, are connected by [PS 4] (3-) tetrahedra. The crystal structures of 2 and 3 are characterized by anionic chains (1) infinity{Nd[PS 4] 2} (3-) being separated by K (+) or Cs (+) ions. Along each chain the Nd (3+) ions are bridged by [PS 4] (3-) anions. The difference between the structures of 2 and 3 is that in 2 the Nd (3+) ions are coordinated by four edge-sharing [PS 4] (3-) tetrahedra while in 3 each Nd (3+) ion is surrounded by one corner-sharing, one face-sharing, and two edge-sharing [PS 4] (3-) tetrahedra. The structure of 4 is a three-dimensional network with K (+) cations residing in tunnels running along [110] and [110]. The {Nd(1)S 8} polyhedra share common edges with four [PS 4] tetrahedra forming one-dimensional chains (1) infinity{Nd[PS 4] 2} (3-) running along [110] and [110]. The chains are linked by {Nd(2)S 8} polyhedra yielding the final three-dimensional network (3) infinity{Nd[PS 4] 2} (3-). The internal vibrations of both crystallographically independent [PS 4] (3-) anions of 2- 4 have been assigned in the range 200-650 cm (-1) by comparison of their corresponding far/mid infrared and Raman spectra (lambda exc = 488 nm) on account of locally imposed C 1 symmetry. In the Fourier-transform-Raman spectrum (lambda exc = 1064 nm) of 2- 4, very similar well-resolved electronic Raman (ER) transitions from the electronic Nd (3+) ground-state to two levels of the (4)I 9/2 ground manifold and to the six levels of the (4)I 11/2 manifold have been determined. Resonant Raman excitation via a B-term mechanism involving the (4)I 15/2 and (4)F 3/2 intermediate states may account for the significant intensity enhancement of the ER transitions with respect to the symmetric P-S stretching vibration nu 1. Broad absorptions in the UV/vis/NIR diffuse reflectance spectrum at 293 K in the range 5000-25000 cm (-1) of 2- 4 are attributed to spin-allowed excited quartet states [ (4)(I < F < S < G < D)] and spin-forbidden doublet states [ (2)(H < G < K < D < P)] of Nd (3+). A luminescense spectrum of 3 obtained at 15 K by excitation with 454.5 nm shows multiplets of narrow lines that reproduce the Nd (3+) absorptions. Sharp and intense luminescence lines are produced instead by excitation with 514.5 nm. Lines at 18681 ( (4)G 7/2), 16692 ( (4)G 5/2), 14489 ( (4)F 9/2), and 13186 cm (-1) ( (4)F 7/2) coincide with the corresponding absorptions. Hypersensitive (4)G 5/2 is split by 42 cm (-1). The most intense multiplet at about 16500 cm (-1) is assigned to the transition from (4)G 5/2 to the Stark levels of the ground manifold (4)I 9/2.  相似文献   

6.
<正> [Ni((C6H11O)2PS2)·(C4H9NH2)4](C6H11O)2PS2,Mr-=938. 05, triclinic,P1,a=13. 513(6),b=16. 040 (7), c= 12. 891(6) A , α= 95. 66 (4),β= 90. 23(4),γ= 75. 46(3)°,V = 2691 A3,Z=2,Dc= 1. 16 g·cm3.μ=6. 07cm-1,MoKa radiation, λ=0. 71069 A ,F(000) = 1020,R=0. 100 for 4595 reflections with I≥3σ(I). The title compound molecule consists of a complex cation [Ni((C6H11O)2PS2)(C4H9-NH2)4]+ and a complex anion (C6H11O)2PS2- . The Ni (Ⅱ) atom in the cation is octahedrally coordinated by four nitrogen atoms from four w-butylamine ligands and two sulfur atoms from one (C6H11O)2PS2 group.  相似文献   

7.
<正> C_34H_88O_2N_4Mo_2Fe_2S_10, Mt= 1209. 25,monoclinic, P2_1/a,a= 17. 722 (7) ,b= 11. 857(5),c= 13. 743(5) A .β= 112. 29 (3)°, V= 2672. 0A3,Z = 2,Dc = 1. 503 g·cm-33,μ(Moka) = 14. 0 cm-1,T=193 K. Final R=0. 045 for 1943 observed reflections (I≥3σ(I)). In the anion [(MoS4)_2Fe2S2]4- ,the two Fe atoms, each attached with a chelating MoS42- unit, are bridged by two sulfur atoms. The metal atoms are arranged in a linear fashion with Mo-Fe-Fe angle of 179. 1(1)°, and Fe-Fe and Fe-Mo distances of 2. 746(2) and 2. 801(2) A, respectively. The long Fe-S distances (average 2. 246A) in Fe2S2 ring could be a result of the hydrogen-bonding interaction between the sulfur atom and the methanolic hydrogen atom.  相似文献   

8.
The first quaternary vanadium niobium compounds containing triangular Nb(3) clusters corresponding to the general formula, AVNb(3)Cl(11) (A = K, Rb, Cs, Tl), have been prepared in sealed quartz tubes from stoichiometric amounts of ACl (A = K, Rb, Cs), or Tl metal, VCl(3), Nb powder, and NbCl(5) heated at 740 degrees C. The compounds crystallize in the orthorhombic space group Pnma (No. 62). The crystal structures of the Rb and Tl members were determined by single-crystal X-ray diffraction techniques. Crystal data: a = 12.771(3) A, b = 6.811(2) A, c = 17.183(3) A, V = 1494.6(1) A(3), and Z = 4 for A = Rb; and a = 12.698(5) A, b = 6.798(3) A, c = 17.145(10) A, V = 1480.0(13) A(3), and Z = 4 for A = Tl. The crystal structure of AVNb(3)Cl(11) consists of triangular Nb(3)Cl(13) clusters (Nb-Nb = 2.826 A) connected to each other via four outer ligands to form infinite chains along the b-axis. The chains are connected by vanadium atoms located in an octahedral environment to form puckered sheets. The A(+) counterions are located between adjacent sheets and coordinate to twelve chlorine ligands in anticubeoctahedral geometry. Electronic structure calculations show bonding orbitals similar to those in Nb(3)Cl(8). Magnetic susceptibility measurements show paramagnetic Curie Weiss behavior.  相似文献   

9.
An alkali-metal sulfur reactive flux has been used to synthesize a series of quaternary rare-earth metal compounds. These include KLaP(2)S(6) (I), K(2)La(P(2)S(6))(1/2)(PS(4)) (II), K(3)La(PS(4))(2) (III), K(4)La(0.67)(PS(4))(2) (IV), K(9-x)La(1+x/3)(PS(4))(4) (x = 0.5) (V), K(4)Eu(PS(4))(2) (VI), and KEuPS(4) (VII). Compound I crystallizes in the monoclinic space group P2(1)/c with the cell parameters a = 11.963(12) A, b = 7.525(10) A, c = 11.389(14) A, beta = 109.88(4) degrees, and Z = 4. Compound II crystallizes in the monoclinic space group P2(1)/n with a = 9.066(6) A, b = 6.793(3) A, c = 20.112(7) A, beta = 97.54(3) degrees, and Z = 4. Compound III crystallizes in the monoclinic space group P2(1)/c with a= 9.141(2) A, b = 17.056(4) A, c = 9.470(2) A, beta = 90.29(2) degrees, and Z = 4. Compound IV crystallizes in the orthorhombic space group Ibam with a = 18.202(2) A, b = 8.7596(7) A, c = 9.7699(8) A, and Z = 4. Compound V crystallizes in the orthorhombic space group Ccca with a = 17.529(9) A, b = 36.43(3) A, c = 9.782(4) A, and Z = 8. Compound VI crystallizes in the orthorhombic space group Ibam with a = 18.29(5) A, b = 8.81(2) A, c= 9.741(10) A, and Z = 4. Compound VII crystallizes in the orthorhombic space group Pnma with a = 16.782(2) A, b = 6.6141(6) A, c = 6.5142(6) A, and Z = 4. The sulfur compounds are in most cases isostructural to their selenium counterparts. By controlling experimental conditions, these structures can be placed in quasi-quaternary phase diagrams, which show the reaction conditions necessary to obtain a particular thiophosphate anionic unit in the crystalline product. These structures have been characterized by Raman and IR spectroscopy and UV-vis diffuse reflectance optical band gap analysis.  相似文献   

10.
The compounds Cp2Ln[N(QPPh2)2] (Ln = La (1), Gd (2), Er (3), or Yb (4) for Q = Se, Ln = Yb (5) for Q = S) have been synthesized from the corresponding rare-earth tris(cyclopentadienyl) compound and H[N(QPPh2)2]. The structures of compounds 1, 2, 3, and 5, as determined by X-ray crystallography, consist of a Cp2Ln fragment, coordinated eta 3 through two chalcogen atoms and an N atom of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]-. In compound 4, the Cp2Yb moiety is coordinated eta 2 through the two Se atoms of the [N(SePPh2)2]-ligand. 31P and 77Se (for 1) NMR spectroscopies lend insight into the solution nature of these species. Crystal data: 1, C34H30LaNP2Se2, triclinic, P1, a = 9.7959(10) A, b = 12.4134(13) A, c = 13.9077(14) A, alpha = 88.106(2) degrees, beta = 88.327(2) degrees, gamma = 68.481(2) degrees, V = 1572.2(3) A3, T = 153 K, Z = 2, and R1(F) = 0.0257 for the 5947 reflections with I > .2 sigma(I); 2, C34H30GdNP2Se2, triclinic, P1, a = 9.7130(14) A, b = 12.2659(17) A, c = 13.953(2) A, alpha = 88.062(2) degrees, beta = 87.613(2) degrees, gamma = 69.041(2) degrees, V = 1550.7(4) A3, T = 153 K, Z = 2, and R1(F) = 0.0323 for the 5064 reflections with I > 2 sigma(I); 3, C34H30ErNP2Se2, triclinic, P1, a = 9.704(2) A, b = 12.222(3) A, c = 13.980(4) A, alpha = 88.230(4) degrees, beta = 87.487(4) degees, gamma = 69.107(4) degrees, V = 1547.4(7) A3, T = 153 K, Z = 2, and R1(F) = 0.0278 for the 6377 reflections with I > 2 sigma(I); 4, C34H30NP2Se2Yb.C4H8O, triclinic, P1, a = 12.087(4) A, b = 12.429(4) A, c = 23.990(7) A, alpha = 89.406(5) degrees, beta = 86.368(5) degrees, gamma = 81.664(5) degrees, V = 3558.8(18) A3, T = 153 K, Z = 4, and R1(F) = 0.0321 for the 11,883 reflections with I > 2 sigma(I); and 5, C34H30NP2S2Yb, monoclinic, P21/n, a = 13.8799(18) A, b = 12.6747(16) A, c = 17.180(2) A, beta = 91.102(3) degrees, V = 3021.8(7) A3, T = 153 K, Z = 4, and R1(F) = 0.0218 for the 6698 reflections with I > 2 sigma(I).  相似文献   

11.
Single crystals of two modifications of the new magnesium boride carbide MgB(12)C(2) were synthesized from the elements in a metallic melt by using tantalum ampoules. Crystals were characterized by single-crystal X-ray diffraction and electron microprobe analysis (energy-dispersive (EDX) and wavelength-dispersive (WDX) X-ray spectroscopy). Orthorhombic MgB(12)C(2) is formed in a Cu/Mg melt at 1873 K. The crystal structure of o-MgB(12)C(2) (Imma, Z=4, a=5.6133(10), b=9.828(2), c=7.9329(15) A, 574 reflections, 42 variables, R(1)(F)=0.0208, wR(2)(I)=0.0540) consists of a hexagonal primitive array of B(12) icosahedra with Mg atoms and C(2) units in trigonal-prismatic voids. Each icosahedron has six exohedral B--B and six B--C bonds. Carbon is tetrahedrally coordinated by three boron atoms and one carbon atom with a remarkably long C--C distance of 1.727 A. Monoclinic MgB(12)C(2) is formed in an Al/Mg melt at 1573 K. The structure of m-MgB(12)C(2) (C2/c, Z=4, a=7.2736(11), b=8.7768(13), c=7.2817(11) A, beta=105.33(3) degrees , 1585 reflections, 71 variables, R(1)(F)=0.0228, wR(2)(I)=0.0610) may be described as a distorted cubic close arrangement of B(12) icosahedra. Tetrahedral voids are filled by C atoms and octahedral voids are occupied by Mg atoms. The icosahedra are interconnected by four exohedral B--B bonds to linear chains and by eight interstitial C atoms to form a three-dimensional covalent network. Both compounds fulfill the electron-counting rules of Wade and Longuet-Higgins.  相似文献   

12.
A series of lanthanide complexes containing a chalcogenolate ligand supported by two TpMe,Me (tris-3,5-dimethylpyrazolylborate) groups has been prepared and crystallized and provides direct comparisons of bonding to hard and soft ligands at lanthanide centers. Reaction of [Sm(TpMe,Me)2Cl] with NaOR (R = Ph, Ph-Bu(t)) gives [Sm(TpMe,Me)2OR] (1a and 1b, respectively) in good yields. Reductive cleavage of dichalcogenides by samarium(II) was used to prepare the heavier congeners. Complexes of the type [Sm(TpMe,Me)2ER] for E = S, R = Ph (2a), E = S, R = Ph-4-Me (2b), E = S, R = CH2Ph (2c), E = Se, R = Ph (3a), E = Se, R = Ph-4-Bu(t) (3b), E = Se, R = CH2Ph (3c), and E = Te, R = Ph (4) have been prepared together with the corresponding complexes with TpMe,Me,4-Et as ancillary. The X-ray crystal structures of 1b, 2b, 3a, 3b, and 4 have been determined. The crystal of 1b (C40H57B2N12OSm.C7H8) was monoclinic, P2(1)/c, a = 10.6845(6) A, b = 18.5573(11) A, c = 24.4075(14) A, beta = 91.616(2) degrees, Z = 4. The crystal of 2b (C37H51B2N12SSm) was monoclinic, P2(1)/n, a = 15.0154(9) A, b = 13.1853(8) A, c = 21.1254(13) A, beta = 108.628(2) degrees, Z = 4. The crystal of 3a (C36H49B2N12SeSm.C7H8) was triclinic, P1, a = 10.7819(6) A, b = 19.3011(10) A, c = 23.0235(12) A, alpha = 79.443(2) degrees, beta = 77.428(2) degrees, gamma = 89.827(2) degrees, Z = 4. The crystal of 3b (C40H57B2N12SeSm) was triclinic, P1, a = 10.1801(6) A, b = 10.2622(6) A, c = 23.4367(14) A, alpha = 88.313(2) degrees, beta = 86.268(2) degrees, gamma = 62.503(2) degrees, Z = 2. The crystal of 4 (C36H49B2N12TeSm.C7H8) was monoclinic, P2(1)/c, a = 18.7440(10) A, b = 10.3892(6) A, c = 23.8351(13) A, beta = 94.854(2) degrees, Z = 4. The compounds form an isoleptic series of seven-coordinate complexes with terminal chalcogenolate ligands. Examination of 1b and other crystallographically characterized lanthanide alkoxides suggests that there is little correlation between bond angle and bond length. The structures of 3a and 3b, however, contain molecules in which one of the pyrazolylborate ligands undergoes a major distortion arising from twisting around a B-N bond so as to give an effectively eight-coordinate complex with pi-stacking of the phenyl group with one pyrazolyl ring. These distortions shed light on the fluxionality of these systems.  相似文献   

13.
<正> 具有MoFe_3S_4单立方烷簇骼的化合物与固氮酶的钼铁蛋白及铁钼辅基存在着某些类似性,从而引起人们的极大注意。1973年卢嘉锡提出的固氮酶活性中心模型—福州模型(Ⅰ)—就具有网兜状缺口MoFe_3S_3单立方烷结构。迄今,还没有见到用简单化合物一步合成,即所谓自兜(Spontaneous self-assembly)合成单立方烷的报导。  相似文献   

14.
A new anionic thallium cluster chain 1 infinity[Cd2Tl11(5-)] has been discovered in the A-Cd-Tl systems for A = Cs, Rb. The compounds are synthesized by direct fusion of the elements at 700 degrees C and equilibration of the quenched product at 200 degrees C for 1 month. The thallides crystallize in the orthorhombic space group Amm2, Z = 2, a = 56107(7) and 55999(6) A, b = 18090(3) and 17603(3) A, c = 13203(3) and 12896(2) A for A = Cs and Rb, respectively, and contain chains of face-sharing pentagonal Tl10 antiprisms embedded in a matrix of alkali metal cations. Cadmium atoms occupy the center of the antiprisms and donate electrons to the anionic chain. Additional four-bonded Tl atoms on one side of the chain make the structure acentric. The compounds are diamagnetic (chi 296 = -08, -40 (x 10(-4) emu/mol, respectively) and metallic (10-20 mu omega cm at 275 K), and the indirect band gap energy of both compounds is close to zero according to extended Hückel calculations on the isolated chain.  相似文献   

15.
Five new antimony(III) complexes with the heterocyclic thiones 2-mercapto-benzimidazole (MBZIM), 5-ethoxy-2-mercapto-benzimidazole (EtMBZIM), and 2-mercapto-thiazolidine (MTZD) of formulas {[SbCl(2)(MBZIM)4]+.Cl-.2H(2)O. (CH(3)OH)} (1), {[SbCl(2)(MBZIM)4]+.Cl-.3H(2)O.(CH3CN)} (2), [SbCl(3)(MBZIM)2] (3), [SbCl(3)(EtMBZIM)(2)] (4), and [SbCl(3)(MTZD)2] (5) have been synthesized and characterized by elemental analysis, FT-IR, far-FT-IR, differential thermal analysis-thermogravimetry, X-ray diffraction, and conductivity measurements. Complex {[SbCl2(tHPMT)(2)]+Cl-}, (tHPMT = 2-mercapto-3,4,5,6-tetrahydro-pyrimidine), already known, was also prepared, and its X-ray crystal structure was solved. It is shown that the complex is better described as {[SbCl3(tHPMT)(2)]} (6). Crystal structures of all other complexes (1-5) have also been determined by X-ray diffraction at ambient conditions. The crystal structure of the hydrated ligand, EtMBZIM.H2O is also reported. Compound [C(28)H(24)Cl(2)N(8)S(4)Sb.2H(2)O.Cl.(CH(3)OH)] (1) crystallizes in space group P2(1), with a = 7.7398(8) A, b = 16.724(3) A, c = 13.717(2) A, beta = 98.632(11) degrees, and Z = 2. Complex [C(28)H(24)Cl(2)N(8)S(4)S(b).Cl.3H(2)O.(CH(3)CN)] (2) corresponds to space group P2(1), with a = 7.8216(8) A, b = 16.7426(17) A, c = 13.9375(16) A, beta = 99.218(10) degrees , and Z = 2. In both 1 and 2 complexes, four sulfur atoms from thione ligands and two chloride ions form an octahedral (Oh) cationic [SbS(4)Cl(2)]+ complex ion, where chlorides lie at axial positions. A third chloride counteranion neutralizes it. Complexes 1 and 2 are the first examples of antimony(III) compounds with positively charged Oh geometries. Compound [C(14)H(12)Cl(3)N(4)S(2)S(b)] (3) crystallizes in space group P, with a = 7.3034(5) A, b = 11.2277(7) A, c = 12.0172(8) A, alpha = 76.772(5) degrees, beta = 77.101(6) degrees, gamma = 87.450(5) degrees, and Z = 2. Complex [C(18)H(20)Cl(3)N(4)O(2)S(2)S(b)] (4) crystallizes in space group P1, with a = 8.6682(6) A, b = 10.6005(7) A, c = 13.0177(9) A, alpha = 84.181(6) degrees, beta = 79.358(6) degrees, gamma = 84.882(6) degrees, and Z = 2, while complex [C(6)H(10)Cl(3)N(2)S(4)S(b)] (5) in space group P2(1)/c shows a = 8.3659(10) A, b = 14.8323(19) A, c = 12.0218(13) A, beta = 99.660(12) degrees, and Z = 4 and complex [C(8)H(16)Cl(3)N(4)S(2)S(b)] (6) in space group P1 shows a = 7.4975(6) A, b = 10.3220(7) A, c = 12.1094(11) A, alpha = 71.411(7) degrees, beta = 84.244(7) degrees, gamma = 73.588(6) degrees, and Z = 2. Crystals of complexes 3-6 grown from acetonitrile solutions adopt a square-pyramidal (SP) geometry, with two sulfur atoms from thione ligands and three chloride anions around Sb(III). The equatorial plane is formed by two sulfur and two chloride atoms in complexes 3-5, in a cis-S, cis-Cl arrangement in 3 and 5 and a trans-S, trans-Cl arrangement in 4. Finally, in the case of 6, the equatorial plane is formed by three chloride ions and one sulfur from the thione ligand while the second sulfur atom takes an axial position leading to a unique SP conformation. The complexes showed a moderate cytostatic activity against tumor cell lines.  相似文献   

16.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

17.
Dias HV  Jin W 《Inorganic chemistry》1996,35(22):6546-6551
The N-methyl-2-(methylamino)troponimine [(Me)(2)ATI]H reacts with bis[bis(trimethylsilyl)amido]tin(II) to yield [(Me)(2)ATI](2)Sn in excellent yield. The treatment of [(Me)(2)ATI](2)Sn with GaI and InCl led to the bis(ligand)gallium(III) and -indium(III) compounds [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl. These metal complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. All three metal adducts show fluxional behavior in solution at room temperature. [(Me)(2)ATI](2)Sn exhibits a pseudo trigonal bipyramidal structure in the solid state. The gallium and indium atoms in [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl adopt trigonal bipyramidal geometry around the metal center with the halide occupying an equatorial site. A convenient, high-yield route to [(Me)(2)ATI]H is also reported. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 183 K: [(Me)(2)ATI](2)Sn, C(18)H(22)N(4)Sn, a = 8.4347(11) ?, b = 10.5564(13) ?, c = 11.5527(11) ?, alpha = 66.931(8) degrees, beta = 73.579(9) degrees, gamma = 67.437(7) degrees, V = 863.3(2) ?(3), triclinic, space group P&onemacr;, Z = 2, R = 0.0224; [(Me)(2)ATI](2)GaI, C(18)H(22)GaIN(4), a = 12.947(2) ?, b = 9.5834(9) ?, c = 16.0132(12) ?, beta = 107.418(8) degrees, V = 1895.8(3) ?(3), monoclinic, space group P2(1)/c, Z = 4, R = 0.0214; [(Me)(2)ATI](2)InCl, C(18)H(22)ClInN(4), a = 24.337(3) ?, b = 8.004(2) ?, c = 19.339(3) ?, beta = 101.537(13) degrees, V = 3691.1(11) ?(3), monoclinic, space group C2/c, Z = 8, R = 0.0224.  相似文献   

18.
The reaction of (C5Me5)2U(CH3)2 with 2 equiv of N[triple bond]C-ArF gives the fluorinated uranium(IV) bis(ketimide) complexes (C5Me5)2U[-N=C(CH3)(ArF)]2 [where ArF=2-F-C6H4 (4), 3-F-C6H4 (5), 4-F-C6H4 (6), 2,6-F2-C6H3 (7), 3,5-F2-C6H3 (8), 2,4,6-F3-C6H2 (9), 3,4,5-F3-C6H2 (10), and C6F5 (11)]. These have been characterized by single-crystal X-ray diffraction, 1H and 19F NMR, cyclic voltammetry, UV-visible-near-IR absorption spectroscopy, and variable-temperature magnetic susceptibility. Density functional theory (DFT) results are reported for complexes 6 and 11 for comparison with experimental data. The most significant structural perturbation imparted by the F substitution in these complexes is a rotation of the fluorinated aryl (ArF) group out of the plane defined by the N=C(CMe)(Cipso) fragment in complexes 7, 9, and 11 when the ArF group possesses two o-fluorine atoms. Excellent agreement is obtained between the DFT-calculated and experimental crystal structures for 11, which displays the distortion, as well as for 6, which does not. In 7, 9, and 11, the out-of-plane rotation results in large angles (phi=53.7-89.4 degrees) between the planes formed by ketimide atoms N=C(CMe)(Cipso) and the ketimide aryl groups. Complexes 6 and 10 do not contain o-fluorine atoms and display interplanar angles in the range of phi=7-26.8 degrees. Complex 4 with a single o-fluorine substituent has intermediate values of phi=20.4 and 49.5 degrees. The distortions in 7, 9, and 11 result from an unfavorable steric interaction between one of the two o-fluorine atoms and the methyl group [-N=C(CH3)] on the ketimide ligand. All complexes exhibit UV/UIV and UIV/UIII redox couples, although the distortion in 7, 9, and 11 appears to be a factor in rendering the UIV/UIII couple irreversible. The potential separation between these couples remains constant at 2.15+/-0.03 V. The electronic spectra are dominated by unusually intense f-f transitions in the near-IR that retain nearly identical band energies but vary in intensity as a function of the fluorinated ketimide ligand, and visible and near-UV bands assigned to metal (5f)-to-ligand (pi*) charge-transfer and interconfiguration (5f2-->5f16d1) transitions, respectively. Variable-temperature magnetic susceptibility data for these complexes indicate a temperature-independent paramagnetism (TIP) below approximately 50 K that results from admixing of low-lying crystal-field excited states derived from the symmetry-split 3H4 5f2 manifold into the ground state. The magnitude of the TIP is smaller for the complexes possessing two o-fluorine atoms (7, 9, and 11), indicating that the energy separation between ground and TIP-admixed excited states is larger as a consequence of the greater basicity of these ligands.  相似文献   

19.
Single crystals of MnThTe3 (1) and MgThTe3 (2) grow as small black plates from the stoichiometric reaction of the elements, the former at 1,000 degrees C and the latter at 900 degrees C with the aid of a Sn flux. Both compounds crystallize in the space group Cmcm of the orthorhombic system with four formula units in cells of dimensions a = 4.2783(6) A, b = 13.8618(11) A, and c = 9.9568(15) A for 1 and a = 4.2854(6) A, b = 14.042(2) A, and c = 9.9450(14) A for 2 at T = 153(2) K. KCuThSe3 (3) forms as red blocks from a stoichiometric mixture of K2Se, Cu, Th, and Se at 800 degrees C, and CsCuThSe3 (4) forms as yellow blocks from a stoichiometric mixture of Cs2Se3, Cu, Th, and Se at 850 degrees C. Compounds 3 and 4 also crystallize in the space group Cmcm of the orthorhombic system with four formula units in cells of dimensions a = 4.1832(8) A, b = 14.335(3) A, and c = 10.859(2) A for 3 and a = 4.2105(7) A, b = 15.715(3) A, and c = 10.897(2) A for 4 at 153(2) K. Compounds 1 and 2 are isostructural with each other as well as with several uranium analogues and comprise pseudolayered structures with slabs of corner-shared MTe6 octahedra alternating with slabs of cap- and edge-shared ThTe8 bicapped trigonal prisms. The slabs are bonded together through the sharing of edges and vertices of the various polyhedra to form three-dimensional structures. Compounds 3 and 4 are two-dimensional layered structures that are closely related to 1 and 2. In 3 and 4, ThSe6 octahedra form the same slabs as MTe6 in 1 and 2 and Cu atoms occupy the tetrahedral holes in the layers. Alkali metal cations occupy bicapped trigonal prismatic sites between the layers. Neither structure type has short Q-Q interactions, and therefore the oxidation states of all atoms are straightforwardly assigned on the assumption of Th4+. Magnetic susceptibility measurements on compound 1 show a ferromagnetic transition at 70 K and a magnetic moment of 5.9(2) muB per Mn ion, indicating low-spin Mn2+.  相似文献   

20.
The reaction of AlH(3).NMe(3) with RCN proceeds with the evolution of trimethylamine and affords (HAINCH(2)R)(6) (R = Ph (1), p-MeC(6)H(4) (2), p-CF(3)C(6)H(4) (3)). Compounds 1 and 3 are characterized by single-crystal structural analysis. Compound 1 reacts with Me(3)SiBr as well as with PhC[triple bond]CH to give (XAINCH(2)Ph)(6) (X = Br (4), PhC[triple bond]C (5)). Structural data and other characterization data of compounds 4 and 5 show that all the hydridic hydrogen atoms in 1 have been replaced by bromine atoms and PhC[triple bond]C groups, respectively. Compounds 1-5 are potential precursors for the preparation of aluminum nitride. Crystals of 1 are rhombohedral, space group R3 macro, with a = 15.7457(13) A, b = 15.7457(13) A, c = 14.949(2) A, V = 3209.8(5) A(3), and Z = 3. Crystals of 3.(3)/(4)C(7)H(8) are triclinic, space group P1 macro, with a = 17.527(11) A, b = 18.894(12) A, c = 19.246(15) A, alpha = 96.11(7) degrees, beta = 102.23(4) degrees, gamma = 106.79(3) degrees, V = 5867(7) A(3), and Z = 4. Compound 4 crystallizes in the monoclinic space group P2(1)/c, with a = 14.175(4) A, b = 16.678(5) A, c = 10.731(3) A, beta = 106.82(2) degrees, V = 2428.6(11) A(3), and Z = 2. Compound 5. C(7)H(8) crystallizes in the monoclinic space group C2/c, with a = 25.842(5) A, b = 15.443(3) A, c = 20.699(4) A, beta = 105.88(3) degrees, V = 7945(3) A(3), and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号