首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-band and Q-band electron paramagnetic resonance (EPR) spectra of Cu(2+) in BaF(2) crystal were recorded in the temperature range of 4.2-200 K. Spin-Hamiltonian parameters of single Cu(2+) complexes and of Cu(2+)-Cu(2+) pairs were derived and discussed. A special attention was paid to the dimeric species. Their molecular ground state configuration was found as having antiferromagnetic intradimer coupling with the singlet-triplet splitting J=-35 cm(-1). The zero-field splitting being D=0.0365 cm(-1) at 4.2 K increases with temperature as an effect of thermal population of excited dimer configurations. Electron spin echo (ESE) method was used for measurements of electron spin lattice and phase relaxation. The spin-lattice relaxation data show that except for coupling to the host lattice phonons the Cu(2+) ions are involved in local mode motions with energy of 82 cm(-1). Phase relaxation (ESE dephasing) of single Cu(2+) ions is due to spin diffusion at low temperatures. This relaxation is hampered for temperatures higher than 30 K due to the triplet state population of neighboring Cu(2+)-Cu(2+) dimers, which disturb dipolar coupling between Cu(2+) ions. For higher temperatures the relaxation is dominated by Raman T(1) processes. Fourier transform ESE spectrum displays dipolar Cu-F splitting which allowed determination of the off-center shift of Cu(2+) as delta(s)=0.132 nm. The dynamical effects observed in EPR spectra and in electron spin relaxation both for single Cu(2+) ions and Cu(2+)-Cu(2+) pairs are discussed as due to jumps between six off-center positions in the crystal unit cell and jumps between various dimer configurations.  相似文献   

2.
With the view of understanding the low frequency (40-50 cm(-1)) motional processes in L-alanine around 4 K, we have carried out heat capacity (CP) and electron spin echo (ESE) measurements on L-alanine and L-alanine-d7. The obtained CP data show the so-called boson peak (seen as a maximum in CP/T3 versus T plots) in the low temperature region (1.8-20 K). The phase memory time, T(M), and spin lattice relaxation time, T1, of the spin probe, the so-called first stable alanine radical (SAR1), *CHCH3COOH, have been measured between 4 and 105 K. The obtained relaxation rate 1/T1 shows an anomalous increase which coincides with the emergence of a boson peak in the low temperature region (4-20 K). Together, the ESE and the CP data confirm the existence of a thermally activated dynamic orientational disorder in the lattices of both compounds below 20 K. The results help explain the discrepancy between the CP data from powders and single crystals of alanine, as well as the proanomalous relaxation mechanisms for SAR1 in these lattices, and they also provide a mechanism for the spin-lattice relaxation process for SAR1 at cryogenic temperatures.  相似文献   

3.
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.  相似文献   

4.
The microscopic dynamics of the planar, multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been investigated using quasielastic neutron scattering. The DMPC was hydrated to a level corresponding to approximately nine water molecules per lipid molecule. Selective deuteration has been used to separately extract the dynamics of the water, the acyl chains, and the polar head groups from the strong incoherent scattering of the remaining hydrogen atoms. Furthermore, the motions parallel and perpendicular to the bilayers were probed by using two different sample orientations relative to the incident neutron beam. For both sample orientations, the results showed an onset of water motions at 260 K on the experimental time scale of about 100 ps. From lack of wave-vector dependence of the onset temperature for water motions, it is evident that the observed water dynamics is of mainly rotational character at such low temperatures. At 290 K, i.e., slightly below the gel-to-liquid transition around 295 K, the nature of the water dynamics had changed to a more translational character, well described by a jump-diffusion model. On the limited experimental time and length (about 10 A) scales, this jump-diffusion process was isotropic, despite the very anisotropic system. The acyl chains exhibited a weak onset of anharmonic motions already at 120 K, probably due to conformational changes (trans-gauche and/or syn-anti) in the plane of the lipid bilayers. Other anharmonic motions were not observed on the experimental time scale until temperature had been reached above the gel-to-liquid transition around 295 K, where the acyl chains start to show more substantial motions.  相似文献   

5.
The electron spin echo (ESE) technique is applied to determine the spin relaxation times of long-lived light-induced radicals and short-term spin-correlated radical pairs (SCRPs) formed by the laser flash of a composite consisting of [6,6]-phenyl-C61-butyric acid methyl ether (PCBM) and poly-(3-hexylthiophene) (P3HT) at 80 K. The ESE signal dependences recorded to measure the longitudinal relaxation times of P3HT+/PCBM? SCRPs and the free P3HT+ radical are fitted by the exp(-(t/T 1)0.6) dependence with T 1 values lying in the microsecond time scale. The difference in the transverse spin relaxation times of the P3HT+/PCBM? radical paira appeared after selective and non-selective echo-detected EPR spectrum excitation is explained by the instantaneous diffusion model. Based on the model, the magnetic interaction energy between the electron spins in P3HT+/PCBM? SCRPs is estimated; E/? ~ 106 s?1.  相似文献   

6.
The active-site structures of Cu(II) plastocyanins (PCu's) from a higher plant (parsley), a seedless vascular plant (fern, Dryopteris crassirhizoma), a green alga (Ulva pertusa), and cyanobacteria (Anabaena variabilis and Synechococcus) have been investigated by paramagnetic (1)H NMR spectroscopy. In all cases the spectra are similar, indicating that the structures of the cupric sites, and the spin density distributions onto the ligands, do not differ greatly between the proteins. The active-site structure of PCu has remained unaltered during the evolutionary process. The electron transfer (et) reactivity of these PCu's is compared utilizing the electron self-exchange (ESE) reaction. At moderate ionic strength (0.10 M) the ESE rate constant is dictated by the distribution of charged amino acid residues on the surface of the PCu's. Most higher plant and the seedless vascular plant PCu's, which have a large number of acidic residues close to the hydrophobic patch surrounding the exposed His87 ligand (the proposed recognition patch for the self-exchange process), have ESE rate constants of approximately 10(3) M(-)(1) s(-)(1). Removal of some of these acidic residues, as in the parsley and green algal PCu's, results in more favorable protein-protein association and an ESE rate constant of approximately 10(4) M(-)(1) s(-)(1). Complete removal of the acidic patch, as in the cyanobacterial PCu's, leads to ESE rate constants of approximately 10(5)-10(6) M(-)(1) s(-)(1). The ESE rate constants of the PCu's with an acidic patch also tend toward approximately 10(5)-10(6) M(-)(1) s(-)(1) at higher ionic strength, thus indicating that once the influence of charged residues has been minimized the et capabilities of the PCu's are comparable. The cytochromes and Fe-S proteins, two other classes of redox metalloproteins, also possess ESE rate constants of approximately 10(5)-10(6) M(-)(1) s(-)(1) at high ionic strength. The effect of the protonation of the His87 ligand in PCu(I) on the ESE reactivity has been investigated. When the influence of the acidic patch is minimized, the ESE rate constant decreases at high [H(+)].  相似文献   

7.
A stable trapped hydrogen atom in X-ray-irradiated beta-tricalcium phosphate (beta-Ca3(PO4)2, beta-TCP) was successfully detected at room temperature. This hydrogen atom is stable at ambient temperature for several months. Hyperfine structure of the hydrogen atom and superhyperfine structures of the two phosphorus atoms were observed by means of electron spin resonance (ESR) spectroscopy. Electron spin-echo (ESE) of the hydrogen atom was observed in X-ray-irradiated beta-TCP. At room temperature, relaxation times of the hydrogen atom in X-ray-irradiated beta-TCP were very long (phase memory time TM = 19.4 mus, spin-lattice relaxation time T1 = 75.8 mus) compared with those of usual paramagnetic species. The most important facts are the detections of ESE and electron spin-echo envelope modulation (ESEEM) at room temperature. At room temperature, the observations of ESE and ESEEM and the estimations for the relaxation times (TM, T1) of the hydrogen atom were carried out for the first time until now. TM was able to be measured from room temperature to 9 K. The short relaxation time TM below 20 K might be explained by the quantum tunneling effect of the hydrogen atom. Fourier transformation of the electron spin-echo envelope modulation (FT-ESEEM) at room temperature suggests the overlapping of the wave functions between the hydrogen atom and the two phosphorus atoms. The site of the hydrogen atom in the X-ray-irradiated beta-TCP was discussed on the basis of the continuous wave ESR (CW-ESR) and pulse-ESR analyses.  相似文献   

8.
A comparative study of anisotropic relaxation in two-pulse primary and three-pulse stimulated electron spin echo decays provides a direct way to distinguish fast (correlation time tau(c)<10(-6) s) and slow (tau(c)>10(-6) s) motions. Anisotropic relaxation is detected as a difference of the decay rates for different resonance field positions in anisotropic electron paramagnetic resonance spectra. For fast motion anisotropic relaxation influences the primary echo decay and does not influence the stimulated echo decay. For slow motion it is seen in both two-pulse echo and three-pulse stimulated echo decays. For nitroxide spin probes dissolved in glassy glycerol only fast motion was found below 200 K. Increase of temperature above 200 K results in the appearance of slow motion. Its amplitude increases rapidly with temperature increase. While in glycerol glass slow motion appears above glass transition temperature T(g), in ethanol glass it is observable below T(g). The scenario of motional dynamics in glasses is proposed which involves the broadening of the correlation time distribution with increasing temperature.  相似文献   

9.
Ten types of neutral charge transfer (CT) complexes of coronene (electron donor; D) were obtained with various electron acceptors (A). In addition to the reported 7,7,8,8‐tetracyanoquinodimethane (TCNQ) complex of 1:1 stoichiometry with a DA‐type alternating π column, TCNQ also afforded a 3:1 complex, in which a face‐to‐face dimer of parallel coronenes ( Cor‐A s) is sandwiched between TCNQs to construct a DDA‐type alternating π column flanked by another coronene ( Cor‐B ). Whereas solid‐state 2H NMR spectra of the 1:1 TCNQ complex formed with deuterated coronene confirmed the single in‐plane 6‐fold flipping motion of the coronenes, two unsynchronized motions were confirmed for the 3:1 TCNQ complex, which is consistent with a crystallographic study. Neutral [Ni(mnt)2] (mnt: maleonitriledithiolate) as an electron acceptor afforded a 5:2 complex with a DDA‐type alternating π column flanked by another coronene, similar to the 3:1 TCNQ complex. The fact that the Cor‐A s in the [Ni(mnt)2] complex arrange in a non‐parallel fashion must cause the fast in‐plane rotation of Cor‐A relative to that of Cor‐B . This is in sharp contrast to the 3:1 TCNQ complex, in which the dimer of parallel Cor‐A s shows inter‐column interactions with neighboring Cor‐A s. The solid‐state 1H NMR signal of the [Ni(mnt)2] complex suddenly broadens at temperatures below approximately 60 K, indicating that the in‐plane rotation of the coronenes undergoes down to approximately 60 K; the rotational rate reaches the gigahertz regime at room temperature. Rotational barriers of these CT complexes, as estimated from variable‐temperature spin–lattice relaxation time (T1) experiments, are significantly lower than that of pristine coronene. The investigated structure–property relationships indicate that the complexation not only facilitates the molecular rotation of coronenes but also provides a new solid‐state rotor system that involves unsynchronized plural rotators.  相似文献   

10.
Continuous wave (cw) electron paramagnetic resonance (EPR) and echo-detected (ED) EPR were applied to study molecular motions of nitroxide spin probes in glassy glycerol and o-terphenyl. A linear decrease with increasing temperature of the total splitting in the cw EPR line shape was observed at low temperatures in both solvents. Above some temperature points the temperature dependencies become sharper. Within the model of molecular librations, this behavior is in qualitative and quantitative agreement with the numerical data on neutron scattering and Mossbauer absorption for molecular glasses and biomolecules, where temperature dependence of the mean-squared amplitude of the vibrational motion was obtained. In analogy with these data the departure from linear temperature dependence in cw EPR may be ascribed to the transition from harmonic to anharmonic motion (this transition is called dynamical transition). ED EPR spectra were found to change drastically above 195 K in glycerol and above 245 K in o-terphenyl, indicating the appearance of anisotropic transverse spin relaxation. This appearance may also be attributed to the dynamical transition as an estimation shows the anisotropic relaxation rates for harmonic and anharmonic librational motions and because these temperature points correspond well to those known from neutron scattering for these solvents. The low sensitivity of ED EPR to harmonic motion and its high sensitivity to the anharmonic one suggests that ED EPR may serve as a sensitive tool to detect dynamical transition in glasses and biomolecules.  相似文献   

11.
[Fe(NH2trz)3]SnF6 ? n H2O (NH2trz=4‐amino‐1,2,4‐triazole; n=1 ( 1 ), n=0.5 ( 2 )) are new 1D spin‐crossover coordination polymers. Compound 2 exhibits an incomplete spin transition centred at around 210 K with a thermal hysteresis loop approximately 16 K wide. The spin transition of 2 was detected by the Mössbauer resonance of the 119Sn atom in the SnF62? anion primarily on the basis of the evolution of its local distortion. Rapid‐cooling 57Fe Mössbauer and superconducting quantum interference device experiments allow dramatic widening of the hysteresis width of 2 from 16 K up to 82 K and also shift the spin‐transition curve into the room temperature region. This unusual behaviour of quenched samples on warming is attributed to activation of the molecular motion of the anions from a frozen distorted form towards a regular form at temperatures well above approximately 210 K. Potential applications of this new family of materials are discussed.  相似文献   

12.
The lambda > 300 nm photolysis of h4- or d4-pyruvic acid aqueous glasses at 77 K yields identical electron magnetic resonance (EMR) spectra arising from distant (r greater or similar 0.5 nm) triplet radical pairs. Spectra comprise: (1) well-resolved quartets, X, at g approximately ge, that closely match the powder spectra of spin pairs interacting across r approximately 1.0 nm with D approximately 3.0 mT, E approximately 0 mT zero field splittings (ZFS), and (2) broad signals, Y, centered at g approximately 2.07 that display marked g-anisotropy and g-strain, exclude D greater or similar 20.0 mT values (i.e., r less or similar 0.5 spin nm separations), and track the temperature dependence of related g approximately 4 features. These results imply that the n-pi excitation of pyruvic acid, PA, induces long-range electron transfer from the promoted carbonyl chromophore into neighboring carbonyl acceptors, rather than homolysis into contact radical pairs or concerted decarboxylation into a carbene. Since PA is associated into hydrogen-bonded dimers prior to vitrification, X signals arise from radical pairs ensuing intradimer electron transfer to a locked acceptor, while Y signals involve carbonyl groups attached to randomly arranged, disjoint monomers. The ultrafast decarboxylation of primary radical ion pairs, 3[PA+* PA-*], accounts for the release of CO2 under cryogenic conditions, the lack of thermal hysteresis displayed by magnetic signals between 10 and 160 K, and averted charge retrotransfer. All EMR signals disappear irreversibly above the onset of ice diffusivity at approximately 190 K.  相似文献   

13.
We have investigated the electron phase-memory relaxation time of the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl at temperatures between 5 and 80 K in crystalline and glassy states of ethanol using pulsed X-band electron paramagnetic resonance spectroscopy. The results indicate that the transition from the slow to fast motion regimes of the paramagnetic center occurs upon further cooling of the sample below ~20 K. We provide experimental evidence that this phenomenon cannot be ascribed to the impact of hyperfine interactions with methyl protons in the system, but it can be instead a signature of the coupling of the electron spin with the boson peak excitations of the lattice.  相似文献   

14.
Ionizing radiation-induced defects in heavy metal fluoride glass have been studied by electron paramagnetic resonance (EPR) and electron spin echo (ESE) modulation techniques. Both pristine as well as water-contaminated glass samples were investigated. EPR measurements indicate that the radiation-induced defect observed after annealing at 393 K is not an oxide-related center introduced by water corrosion. ESE modulation data was used to probe the structure of the hole trap responsible for the so-called “central line”. From the observed aluminum modulation it is concluded that the defect site is located near an aluminum cation in the glass structure.  相似文献   

15.
The reorientational dynamics of benzene-d(6) molecules hosted into the cavity of a cavitand-based, self-assembled capsule was investigated by Molecular Dynamics (MD) simulations and temperature-dependent solid-state (2)H NMR spectroscopy. MD simulations were preliminarily performed to assess the motional models of the guest molecules inside the capsules. An in-plane fast reorientation of the benzene guest around the C(6) symmetry axis (B1 motion), characterized by correlation times of the order of picoseconds, was predicted with an activation barrier ( approximately 8 kJ/mol) very similar to that found for neat benzene in the liquid state. An out-of-plane reorientation corresponding to a nutation of the C(6) symmetry axis in a cone angle of 39 degrees (B2 motion, 373 K) with an activation barrier ( approximately 39 kJ/mol) definitely larger than that of liquid benzene was also anticipated. In the temperature range 293-373 K correlation times of the order of a nanosecond have been calculated and a transition from fast to slow regime in the (2)H NMR scale has been predicted between 293 and 173 K. (2)H NMR spectroscopic analysis, carried out in the temperature range 173-373 K on the solid capsules containing the perdeuterated guest (two benzene molecules/capsule), confirmed the occurrence of the B1 and B2 motions found in slow exchange in the (2)H NMR time scale. Line shape simulation of the (2)H NMR spectral lines permitted defining a cone angle value of 39 degrees at 373 K and 35 degrees at 173 K for the nutation axis. The T(1) values measured for the (2)H nuclei of the encapsulated aromatic guest gave correlation times and energetic barrier for the in-plane motion B1 in fine agreement with theoretical calculation. The experimental correlation time for B2 as well as the corresponding energetic barrier are in the same range found for B1. A molecular mechanism for the encapsulated guest accounting for the B1 and B2 motions was also provided.  相似文献   

16.
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below approximately 330 K or an inverted hexagonal phase above approximately 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (approximately 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.  相似文献   

17.
Modulation phenomena that take place during electron spin echo signal decay have long been used in structural studies of free radicals and their environment. These phenomena are based on coherent dynamic effects, arising from simultaneous excitation (by microwave pulses) of two or more transitions in the EPR spectrum. Recently, a new source of stimulated electron spin echo (ESE) modulation was discovered due to spontaneous changes in the magnetic parameters of radicals during the operation of the pulse sequence. For monoradicals, these changes are caused by intramolecular motions. For radical pairs, additional mechanisms are longitudinal relaxation of spin counterparts and transformations of the paramagnetic partners during chemical reactions. Promising applications of this phenomenon to structural studies of radicals and radical pairs in solids and to investigations of their mobility and chemical transformations are considered.  相似文献   

18.
The TOAC-spin-labeled peptide Trichogin GA IV adsorbed on the TiO2 surface is studied. It is shown that the continuous wave (CW) electron paramagnetic resonance (EPR) spectrum does not depend on temperature in a wide range of 77–300 K. A pulsed EPR method of electron spin echo (ESE) utilizing a two-pulse sequence (π/2-τ-π) is used to study temperature dependence of the phase relaxation time, TF. The TF values are found to change from 750 ns to 100 ns in the interval of 77–300 K. The pulsed electronelectron double resonance (PELDOR) measurements utilizing the pulse sequence((π/2)A,-T-πB,-(τ-T)-πA) show that the space distribution of spin labels on the surface remains uniform irrespective of the temperature, and provide the fractal dimension of the surface of 2.7±0.1. The obtained results testify that EPR pulse experiments can be used to study adsorbed spin-labeled molecules at room temperatures, i.e. not only at cryogenic temperatures.  相似文献   

19.
Earlier work showed that heating causes poly(diethylsiloxane) to undergo a first-order transition from a semicrystalline solid to a more mobile viscous—crystalline material. The latter is composed of two phases and analogies between polymer and liquid crystal morphology and behavior have been made. The viscous—crystalline phase in PDES appears to be unique since the literature is devoid of other documented examples. In this study, spin—lattice and spin—spin relaxation times were measured over a wide temperature range. They show a glass transition at 138°K, a crystal—crystal transition at 206°K, and a transition around 250°K which results from translational motion of the polymer chains with respect to each other. This motion is observed in the amorphous phase at a lower temperature than in the crystalline phase. Translational motion in the crystalline phase is observed on melting of the crystallites. The spin—spin data permitted monitoring of the molecular motions in each phase and the data suggest that these phases exert some influence on the molecular motions of each other. The viscous—crystalline phase in PDES may represent a unique model for studying and understanding “precrystalline” behavior and structure in amorphous solids.  相似文献   

20.
Cu(I)-NO adsorption complexes were formed over Cu-ZSM-5 zeolites prepared by (i) solid-state ion exchange of NH(4)-ZSM-5 with CuCl and (ii) liquid-state ion exchange of ZSM-5 with Cu(CH(3)COO)(2). Electron spin resonance spectroscopy revealed the formation of two different Cu(I)-NO species A and B in both systems, whose spin Hamiltonian parameters are comparable with those already reported for the Cu(I)-NO species formed over 66% Cu(II) liquid-state ion-exchanged Cu-ZSM-5 materials. The population of the species A and B differs for the two systems studied. Formation of species B is more favored in the solid-state ion-exchanged Cu-ZSM-5 when compared to the liquid-state exchanged zeolite. The X-, Q- and W-band electron spin resonance spectra recorded at 6 and 77 K reveal the presence of a rigid geometry of the adsorption complexes at 6 K and a dynamic complex structure at higher temperatures such as 77 K. This is indicated by the change in the spin Hamiltonian parameters of the formed Cu(I)-NO species in both the liquid- and solid-state ion-exchanged Cu-ZSM-5 zeolites from 6 to 77 K. Possible models for the motional effects found at elevated temperatures are discussed. The temperature dependence of the electron spin phase memory time measured by two-pulse electron spin-echo experiments indicates, likewise, the onset of a motional process of the adsorbed NO molecules at temperatures above 10 K. The studies support previous assignments where the NO complexes are formed at two different Cu(I) cationic sites in the ZSM-5 framework and highlight that multifrequency electron spin resonance experiments at low temperatures are essential for reliable determination of the spin Hamiltonian parameters of the formed adsorption complexes for further comparison with Cu(I)-NO complex structures predicted by quantum chemical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号