首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
针对部分线性变系数模型的参数估计问题,提出了一种新复合分位数回归估计方法.利用复合分位数回归法估计参数部分,局部非线性复合分位数回归法估计变系数函数部分,并在若干正则条件下,证明了常系数和变系数函数估计量具有较好的渐近正态性质.通过随机模拟和实例分析,验证了所提估计方法在有限样本下的良好表现,有效的证明了所提方法的优越...  相似文献   

2.
纵向数据是数理统计研究中的复杂数据类型之一0,在生物、医学和经济学中具有广泛的应用.在实际中经常需要对纵向数据进行统计分析和建模.文章讨论了纵向数据下的半参数变系数部分线性回归模型,这里的纵向数据的在纵向观察在时间上可以是不均等的,也可看成是按某一随机过程来发生.所研究的半参数变系数模型包括了许多半参数模型,比如部分线性模型和变系数模型等.利用计数过程理论和局部线性回归方法,对于纵向数据下半参数变系数进行了统计推断,给出了参数分量和非参数分量的profile最小二乘估计,研究了这些估计的渐近性质,获得这些估计的相合性和渐近正态性.  相似文献   

3.
作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的数据分析模型.利用Backfitting方法拟合这类特殊的可加模型,可得到模型中常值系数估计量的精确解析表达式,该估计量被证明是n~(1/2)相合的.最后通过数值模拟考察了所提估计方法的有效性.  相似文献   

4.
为了分析删失数据,该文考虑变系数部分线性模型,此模型允许协变量对响应变量存在非线性影响.响应变量与协变量之间关系的统计模型通过线性结构来拟合是非常重要而且有益.对于删失数据,常用的统计方法不能直接应用于此模型.该文首先提出一类数据变换用以建立无偏条件期望.然后利用profile最小二乘方法,给出了模型中参数分量和非参数分量的profile最小二乘估计,并建立了这些估计的渐近正态性.最后通过数值例子来说明该文所提出的方法的有效性.  相似文献   

5.
杜雪樵 《应用数学》1995,8(2):249-251
考虑线性系统模型 y=x'β_0 x'r_0e, (1)其中x为P维已知向量,β_0是未知的P维回归系数,e是1维不可观察的误差随机变量。 y在x下的条件u分位数可以写成:  相似文献   

6.
本文讨论因变量缺失下部分线性变系数模型在误差项和解释变量都含有异常点时的稳健估计问题。首先用局部加权线性光滑方法得到非参数部分的稳健估计,然后再得到参数部分的估计,并证明参数和非参数估计量的渐近正态性。最后模拟研究有限样本下估计量的表现。  相似文献   

7.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

8.
基于众数回归,利用工具变量研究含有内生变量的变系数部分线性模型的稳健估计.首先,引入工具变量对内生协变量进行分解,从而得到内生协变量的一致估计;其次,运用B样条基函数近似模型中的非参数部分,将模型简化;进一步,基于众数回归的思想,结合EM算法得到参数和非参数函数的估计.在一定条件下,证明估计量的大样本性质;最后,利用模拟实验和真实实例验证所提方法的有效性.  相似文献   

9.
作为部分线性模型和变系数模型的推广,部分线性变系数模型以其良好的适应性和稳健性受到了广泛的关注。本文基于函数的局部线性拟合,给出部分线性变系数模型的另一种轮廓(profile)最小二乘估计的方法,并从理论上证实了所得估计量具有良好的渐近性质,最后给出了估计方法的实例分析。  相似文献   

10.
该文研究协变量随机缺失下半参数变系数部分线性模型的统计推断.利用逆概率加权最小二乘方法给出了模型中参数分量和非参数分量的估计,并证明了它们的渐近正态性.另外该文又提出了一个逆概率加权经验对数似然比统计量,并证明该统计量服从标准χ~2分布,从而构造了模型中参数分量的经验似然置信域.最后通过模拟研究和实例分析说明该文提出的方法具有较好的有限样本性质.  相似文献   

11.
This paper considers a nonparametric varying coefficient regression with spatial data. A global smoothing procedure is developed by using B-spline function approximations for estimating the coefficient functions. Under mild regularity assumptions,the global convergence rates of the B-spline estimators of the unknown coefficient functions are established. Asymptotic results show that our B-spline estimators achieve the optimal convergence rate. The asymptotic distributions of the B-spline estimators of the u...  相似文献   

12.
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

13.
In this paper, we propose a class of varying coefficient seemingly unrelated regression models, in which the errors are correlated across the equations. By applying the series approximation and taking the contemporaneous correlations into account, we propose an efficient generalized least squares series estimation for the unknown coefficient functions. The consistency and asymptotic normality of the resulting estimators are established. In comparison with the ordinary/east squares ones, the proposed estimators are more efficient with smaller asymptotical variances. Some simulgtlon'studies and a real application are presented to demonstrate the finite sample performance of the proposed methods. In addition, based on a B-spline approximation, we deduce the asymptotic bias and variance of the proposed estimators.  相似文献   

14.
A one-step method is proposed to estimate the unknown functions in the varying coefficient models, in which the unknown functions admit different degrees of smoothness. In this method polynomials of different orders are used to approximate unknown functions with different degrees of smoothness. As only one minimization operation is employed, the required computation burden is much less than that required by the existing two-step estimation method. It is shown that the one-step estimators also achieve the optimal convergence rate. Moreover this property is obtained under conditions milder than that imposed in the two-step estimation method. More importantly, as only one minimization operation is employed, the full asymptotic properties, not only the asymptotic bias and variance, but also the asymptotic distributions of the estimators can be derived. The asymptotic distribution results will play a key role for making statistical inference.  相似文献   

15.
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach.  相似文献   

16.
在随机设计条件下,提出了一类变系数联立模型,运用局部线性广义矩变窗宽估计,对模型的变系数进行了估计,研究了估计量的大样本性质.利用概率论中大数定律和中心极限定理,证明了估计量的大样本性质,局部线性广义矩变窗宽估计具有相合性和渐进正态性.  相似文献   

17.
Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

18.
Informative dropout often arise in longitudinal data. In this paper we propose a mixture model in which the responses follow a semiparametric varying coefficient random effects model and some of the regression coefficients depend on the dropout time in a non-parametric way. The local linear version of the profile-kernel method is used to estimate the parameters of the model. The proposed estimators are shown to be consistent and asymptotically normal, and the finite performance of the estimators is evaluated by numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号