首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
钼铁硫簇合物化学   总被引:1,自引:0,他引:1  
Mo—Fe—S簇合物化学是在固氮酶活性中心铁钼辅基(FeMo—co)的分离和性质研究的直接推动下发展起来的。从做为固氮酶活性中心结构模型的第一个Mo—Fe—S簇合物的出的到现在,虽然才短短几年,世界上许多实验室都在从事这方面的研究,并且已经形成了一个相当活跃的新的生物无机化学研究领域。  相似文献   

2.
钼铁硫簇合物催化乙炔还原反应的研究   总被引:1,自引:0,他引:1  
徐吉庆  阎英卓  魏诠 《催化学报》1988,9(2):218-222
钼铁辅基的分离及其EXAFS(外延X射线精细结构)的测定结果表明,固氮酶活性中心是一种Mo-Fe-S原子簇结构.为模拟固氮酶活性中心结构及研究其性能,人们开展了钼铁硫簇合物的合成、结构和性质的研究.迄今已经合成了上百种钼铁硫簇合物,从而形成了钼铁硫簇合物化学. 固氮酶是由钼铁蛋白和铁蛋白组成的,活性中心在钼铁蛋白中,铁蛋白的作用是传递外部还原剂提供的电子.固氮酶的基本功能是具有固氮活性.生物学家在研究固氮酶的  相似文献   

3.
<正> 具有MoFe_3S_4单立方烷簇骼的化合物与固氮酶的钼铁蛋白及铁钼辅基存在着某些类似性,从而引起人们的极大注意。1973年卢嘉锡提出的固氮酶活性中心模型—福州模型(Ⅰ)—就具有网兜状缺口MoFe_3S_3单立方烷结构。迄今,还没有见到用简单化合物一步合成,即所谓自兜(Spontaneous self-assembly)合成单立方烷的报导。  相似文献   

4.
我们曾报道双类立方烷簇合物(Et_4N)_4[Mo_2Fe_7S_8(SR)_(12)](R=Ph,1;R=o-tolyl,2;R=m-tolyl,3;R=p-tolyl,4)的结构,磁性质,及化学反应.氧化还原酶的固氮酶,其活性部位的 Mo 和 S 元素,可以发生丰富的氧化还原反应,研究这类铁钼硫簇合物的氧还性质,对了解电子传递情况是极为有用的.  相似文献   

5.
固氮酶的固氮机理和其人工模拟问题的探讨   总被引:1,自引:0,他引:1  
张纯喜 《化学进展》1997,9(2):131-139
固氮酶将N2 还原为NH3 的过程是自然界实现氮循环的重要环节。本文着重对固氮酶的固氮机理和其活性中心FeMo 辅基的人工模拟合成进行探讨, 其中包括FeMo蛋白中的质子和电子的传递, FeMo 辅基对N2 的活化方式,Mo 原子的作用, 固氮活性的测试。最后还就固氮酶的活性中心FeMo 辅基的人工模拟合成进行了探讨。  相似文献   

6.
采用密度泛函理论对化学计量比钼氧簇阳离子(MoO_3)_n~+(n=1~4)的结构和反应性进行理论研究.计算结果表明,化学计量比钼氧簇阳离子(MoO_3)_n~+(n=1~4)的基态结构均为二重态,且含有一个拉长的Mo–O键连接的端氧自由基(Mo–Ot·).这类氧自由基具有很高的反应活性,可作为催化反应的活性中心.在杂化泛函B3LYP水平下,通过计算反应势能面研究钼氧簇阳离子(MoO_3)_n~+(n=1~4)与CO的反应机理:CO先以C端吸附在与氧自由基(Ot·)相连的金属Mo原子上;随后,Mo–Ot·键断裂,氧自由基转移到CO上,形成CO_2基团;最后CO_2分子脱去.上述反应均是无能垒的放热反应,单核钼氧簇MoO_3~+的高反应活性与其中心钼原子的低配位环境有关.  相似文献   

7.
考察了经不同温度还原的Fe/ZrO2 催化剂在CO2 加氢制低碳烃反应中的催化活性 ,最佳结果为CO2 转化率2 7 0 % ,对C2 + 烃的选择性 5 6 7% .采用XRD ,57FeM ssbauer谱 ,FeK 吸收边的X射线吸收近边结构 (XANES)及扩展X射线吸收精细结构 (EXAFS)等表征方法研究了催化剂的表面结构 .结果表明 ,在ZrO2 表面上主要存在α Fe及配位不饱和的Fe3 + 两种物种 .催化剂表面明显呈氧缺位、零价铁相对富集的状态 .还原温度对表面结构有显著的影响 ,最佳还原温度与表面Fe O键的键长有关 .结合这种催化剂在CO2 加氢制低碳烃反应中的催化活性 ,认为α Fe与配位不饱和的Fe3 + 物种的协同作用是其具有较高催化活性的重要原因  相似文献   

8.
结合实验和理论计算的结果, 讨论了固氮酶的活性中心铁钼辅基(FeMo-co-facto r) 对N2 的各种活化方式, 并在此基础上提出了一种新模型, 即N2 在FeMo2cofacto r 的内部以“4Fe 端基配位+2Fe 侧基配位”的方式被活化,N2 的三重键完全断裂, 断裂产生的两个含N 的碎片分别偏向两侧的“窗口”, 再在H 的进攻下被还原为NH3, 并分别从两侧的“窗口”离去。  相似文献   

9.
研究MoS42-在钢表面发生配位化学反应所形成的具有装饰效果的多种彩色簇合物膜。FT-IR、F-IR、FT-Raman、 XPS和AES分析表明簇合物膜由Fe、Mo、 S、 O元素组成,在膜表面铁以Fe(Ⅲ)、钼以Mo(Ⅵ)状态存在,而在膜内层以Fe(Ⅱ)、Mo(Ⅳ)和Mo(Ⅵ)共存,S和O都呈-2价。从AES深度分布曲线的组成恒定区求得了各元素的相对原子百分浓度和膜层厚度,反应时间越长,膜越厚,膜为多分子层结构。  相似文献   

10.
在无氧非水介质中, 以(NH4)2MoS4, FeCl3和NaS2CNEt2为原料合成了簇合物[Mo2Fe2S4(S2CNEt2)5]·CH3CN。X射线单晶结构测定表明, 它具有[Mo2Fe2S4]^5^+类立方烷核心骨架。每个金属原子有一螯合基团S2CNEt2配位。第五个S2CNEt2基团在两个Mo原子间跨桥配位。XPS和Mossbauer谱的测定及M-S(M=Fe或Mo)键长比较表明, 簇合物中Fe原子的氧化态是不同的, 而两个Mo原子则具有相同的氧化态, 该簇合物为顺磁性物质, μm=4.27μs。此外, 还测定了它的红外光谱, 紫外-可见光谱和催化乙炔还原活性。  相似文献   

11.
Density functional theory (DFT) calculations have been performed on the nitrogenase cofactor, FeMoco. Issues that have been addressed concern the nature of M-M interactions and the identity and origin of the central light atom, revealed in a recent crystallographic study of the FeMo protein of nitrogenase (Einsle, O.; et al. Science 2002, 297, 871). Introduction of Se in place of the S atoms in the cofactor and energy minimization results in an optimized structure very similar to that in the native enzyme. The nearly identical, short, lengths of the Fe-Fe distances in the Se and S analogues are interpreted in terms of M-M weak bonding interactions. DFT calculations with O or N as the central atoms in the FeMoco marginally support the assignment of the central atom as N rather than O. The assumption was made that the central atom is the N atom, and steps of a catalytic cycle were calculated starting with either of two possible states for the cofactor and maintaining the same charge throughout (by addition of equal numbers of H(+) and e(-)) between steps. The states were [(Cl)Fe(II)(6)Fe(III)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)](2-), [I-N-3H](2-), and [(Cl)Fe(II)(4)Fe(III)(3)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)], [I-N-3H](0) (Gl = deprotonated glycol; Im = imidazole). These are the triply protonated ENDOR/ESEEM [I-N](5-) and M?ssbauer [I-N](3-) models, respectively. The proposed mechanism explores the possibilities that (a) redox-induced distortions facilitate insertion of N(2) and derivative substrates into the Fe(6) central unit of the cofactor, (b) the central atom in the cofactor is an exchangeable nitrogen, and (c) the individual steps are related by H(+)/e(-) additions (and reduction of substrate) or aquation/dehydration (and distortion of the Fe(6) center). The Delta E's associated with the individual steps of the proposed mechanism are small and either positive or negative. The largest positive Delta E is +121 kJ/mol. The largest negative Delta E of -333 kJ/mol is for the FeMoco with a N(3-) in the center (the isolated form) and an intermediate in the proposed mechanism.  相似文献   

12.
A high-spin Fe(8)S(9)X(+) (X=N, C) cluster is used to model the reduction of molecular nitrogen to ammonia by the nitrogenase FeMo cofactor at the B3LYP/6-311G(d,p)/ECP(Fe,SDD) level of theory. A total of seventy-three structures were optimized (including three transition state optimizations) to explore the structure and energetic of N(2), C(2)H(2), and CO coordination to the Fe(8)S(9)X(+) cluster. After three protonation-reduction (PR) steps (modeled by addition of hydrogen atoms), N(2), C(2)H(2), and CO are predicted to bind to a Fe atom in the exo (cage does not open) position with binding energies of 7.6, 14.7, and 11.7 kcal/mol. With additional PR steps the coordination number of the core nitrogen atom is reduced from six to five and the bridging thiol group becomes a terminal SH(2) group. The fifth and sixth PR steps occur on the core nitrogen and the open Fe site. Coordination of N(2) is enhanced after six PR steps to give an intermediate ideally suited for a concerted dihydrogen transfer from the Fe and core nitrogen atoms to the coordinated N(2). The identity of the central atom (nitrogen or carbon) has only a minor effect on the reaction steps.  相似文献   

13.
The occurrence of a heteroatom X (C, N, or O) in the MoFe7S9X core of the iron-molybdenum cofactor of nitrogenase has encouraged synthetic attempts to prepare high-nuclearity M-Fe-S-X clusters containing such atoms. We have previously shown that reaction of the edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] (1) with nucleophiles HQ- affords the clusters [(Tp)2Mo2Fe6S8Q(QH)2](3-) (Q = S, Se) in which HQ- is a terminal ligand and Q(2-) is a mu2-bridging atom in the core. Reactions with OH- used as such or oxygen nucleophiles generated in acetonitrile from (Bu3Sn)2O or Me3SnOH and fluoride were examined. Reaction of 1 with Et4NOH in acetonitrile/water generates [(Tp)2Mo2Fe6S9(OH)2]3- (3), isolated as [(Tp)2Mo2Fe6S9(OH)(OC(=NH)Me)(H2O)](3-) and shown to have the [Mo2Fe6(mu2-S)2(mu3-S)6(mu6-S)] core topology very similar to the P(N) cluster of nitrogenase. The reaction system 1/Et4NOH in acetonitrile/methanol yields the P(N)-type cluster [(Tp)2Mo2Fe6S9(OMe)2(H2O)](3-) (5). The system 1/Me3SnOH/F- affords the oxo-bridged double P(N)-type cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}5- (7), convertible to the oxidized cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}4- (6), which is prepared independently from [(Tp)2Mo2Fe6S9F2(H2O)](3-)/(Bu3Sn)2O. In the preparations of 3-5 and 7, hydroxide liberates sulfide from 1 leading to the formation of P(N)-type clusters. Unlike reactions with HQ-, no oxygen atoms are integrated into the core structures of the products. However, the half-dimer composition [Mo2Fe6S9O] relates to the MoFe7S9 constitution of the putative native cluster with X = O. (Tp = hydrotris(pyrazolyl) borate(1-)).  相似文献   

14.
Zhou HC  Su W  Achim C  Rao PV  Holm RH 《Inorganic chemistry》2002,41(12):3191-3201
High-nuclearity Mo[bond]Fe[bond]S clusters are of interest as potential synthetic precursors to the MoFe(7)S(9) cofactor cluster of nitrogenase. In this context, the synthesis and properties of previously reported but sparsely described trinuclear [(edt)(2)M(2)FeS(6)](3-) (M = Mo (2), W (3)) and hexanuclear [(edt)(2)Mo(2)Fe(4)S(9)](4-) (4, edt = ethane-1,2-dithiolate; Zhang, Z.; et al. Kexue Tongbao 1987, 32, 1405) have been reexamined and extended. More accurate structures of 2-4 that confirm earlier findings have been determined. Detailed preparations (not previously available) are given for 2 and 3, whose structures exhibit the C(2) arrangement [[(edt)M(S)(mu(2)-S)(2)](2)Fe(III)](3-) with square pyramidal Mo(V) and tetrahedral Fe(III). Oxidation states follow from (57)Fe M?ssbauer parameters and an S = (3)/(2) ground state from the EPR spectrum. The assembly system 2/3FeCl(3)/3Li(2)S/nNaSEt in methanol/acetonitrile (n = 4) affords (R(4)N)(4)[4] (R = Et, Bu; 70-80%). The structure of 4 contains the [Mo(2)Fe(4)(mu(2)-S)(6)(mu(3)-S)(2)(mu(4)-S)](0) core, with the same bridging pattern as the [Fe(6)S(9)](2-) core of [Fe(6)S(9)(SR)(2)](4-) (1), in overall C(2v) symmetry. Cluster 4 supports a reversible three-member electron transfer series 4-/3-/2- with E(1/2) = -0.76 and -0.30 V in Me(2)SO. Oxidation of (Et(4)N)(4)[4] in DMF with 1 equiv of tropylium ion gives [(edt)(2)Mo(2)Fe(4)S(9)](3-) (5) isolated as (Et(4)N)(3)[5].2DMF (75%). Alternatively, the assembly system (n = 3) gives the oxidized cluster directly as (Bu(4)N)(3)[5] (53%). Treatment of 5 with 1 equiv of [Cp(2)Fe](1+) in DMF did not result in one-electron oxidation but instead produced heptanuclear [(edt)(2)Mo(2)Fe(5)S(11)](3-) (6), isolated as the Bu(4)N(+)salt (38%). Cluster 6 features the previously unknown core Mo(2)Fe(5)(mu(2)-S)(7)(mu(3)-S)(4) in molecular C(2) symmetry. In 4-6, the (edt)MoS(3) sites are distorted trigonal bipramidal and the FeS(4) sites are distorted tetrahedral with all sulfide ligands bridging. M?ssbauer spectroscopic data for 2 and 4-6 are reported; (mean) iron oxidation states increase in the order 4 < 5 approximately 1 < 6 approximately 2. Redox and spectroscopic data attributed earlier to clusters 2 and 4 are largely in disagreement with those determined in this work. The only iron and molybdenum[bond]iron clusters with the same sulfide content as the iron[bond]molybdenum cofactor of nitrogenase are [Fe(6)S(9)(SR)(2)](4-) and [(edt)(2)Mo(2)Fe(4)S(9)](3-)(,4-).  相似文献   

15.
通过调变六次甲基四胺与金属钼盐的摩尔比例,以络合物分解法制备了碳氮夹杂钼基催化剂,并将其负载于氧化铝载体上.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、低温氮吸附、元素分析等方法对催化剂进行了表征,发现碳氮夹杂钼基催化剂实为碳化钼(β-Mo2C)与碳氮化钼(M02CxNy)的混合物.以二苯并噻吩(DBT)的加氢脱硫反应(HDS)为探针,比较了负载型碳化钼、氮化钼及碳氮夹钼基催化剂的催化活性,发现由于夹杂催化剂中含有新的活性相Mo2CxNy。而表现出高于碳化钼和氮化钼催化剂的催化活性.  相似文献   

16.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

17.
Current theoretical and experimental evidence points toward X = N as the identity of the interstitial atom in the [MoFe7S9X] core of the iron-molybdenum cofactor cluster of nitrogenase. This atom functions with mu6 bridging multiplicity to six iron atoms and, if it is nitrogen as nitride, raises a question as to the existence of a family of molecular iron nitrides of higher nuclearity than known dinuclear Fe(III,IV) species with linear [Fe-N-Fe]5+,4+ bridges. This matter has been initially examined by variation of reactant stoichiometry in the self-assembly systems [FeX4]1-/(Me3Sn)3N (X = Cl-, Br-) in acetonitrile. A 2:1 mol ratio affords [Fe4N2Cl10]4- (1), isolated as the Et4N+ salt (72%). This cluster has idealized C2h symmetry with a planar antiferromagnetically coupled [Fe(III)4(mu3-N)2]6+ core containing an Fe2N2 rhombus to which are attached two FeCl3 units. DFT calculations have been performed to determine the dominant magnetic exchange pathway. An 11:8 mol ratio leads to [Fe10N8Cl12]5- (3) as the Et4N+ salt (37%). The cluster possesses idealized D2h symmetry and is built of 15 edge- and vertex-shared rhomboids involving two mu3-N and six mu4-N bridging atoms, and incorporates two of the core units of 1. Four FeN2Cl2 and four FeN3Cl sites are tetrahedral and two FeN5 sites are trigonal pyramidal. The cluster is mixed-valence (9Fe(III) + Fe(IV)); a discrete Fe(IV) site was not detected by crystallography or M?ssbauer spectroscopy. The corresponding clusters [Fe4N2Br10]4- and [Fe10N8Br12]5- are isostructural with 1 and 3, respectively. Future research is directed toward defining the scope of the family of molecular iron nitrides.  相似文献   

18.
Reaction of the edge-bridged double cubane cluster [(Tp)(2)M(2)Fe(6)S(8)(PEt(3))(4)] (1; Tp = hydrotris(pyrazolyl)borate(1-)) with hydrosulfide affords the clusters [(Tp)(2)M(2)Fe(6)S(9)(SH)(2)](3)(-)(,4)(-) (M = Mo (2), V), which have been established as the first structural (topological) analogues of the P(N) cluster of nitrogenase. The synthetic reaction is an example of core conversion, resulting in the transformation M(2)Fe(6)(mu(3)-S)(6)(mu(4)-S)(2) (C(i)) --> M(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S) (C(2)(v)), the reaction pathway of which is unknown. The most prominent structural feature of P(N)-type clusters is the mu(6)-S atom, which bridges six iron atoms in two MFe(3)S(3) cuboidal halves of the cluster. The initial issue in core conversion is the origin of the mu(6)-S atom. Utilizing SeH(-) as a surrogate reactant for SH(-) in the system 1/SeH(-)/L(-) in acetonitrile, a series of selenide clusters [(Tp)(2)Mo(2)Fe(6)S(8)SeL(2)](3)(-) (L(-) = SH(-) (4), SeH(-) (5), EtS(-) (6), CN(-) (7)) was prepared. The electrospray mass spectra of 4 and 6 revealed inclusion of one Se atom in each cluster, and (1)H NMR spectra and crystallographic refinements of 4-7 indicated that this atom was disordered over the two mu(2)-S/Se positions. The clusters {[(Tp)(2)Mo(2)Fe(6)S(9)](mu(2)-S)}(2)(5)(-) (8) and {[(Tp)(2)Mo(2)Fe(6)S(8)Se](mu(2)-Se)}(2)(5)(-) (9) were prepared from 2 and 5, respectively, and shown to be isostructural. They consist of two P(N)-type cluster units bridged by two mu(2)-S or mu(2)-Se atoms. It is concluded that, in the preparation of 2, the probable structural fate of the attacking nucleophile is as a mu(2)-S atom, and that the mu(3)-S and mu(6)-S atoms of the product cluster derive from precursor cluster 1. Cluster fragmentation during P(N)-type cluster synthesis is unlikely.  相似文献   

19.
<正> C_34H_88O_2N_4Mo_2Fe_2S_10, Mt= 1209. 25,monoclinic, P2_1/a,a= 17. 722 (7) ,b= 11. 857(5),c= 13. 743(5) A .β= 112. 29 (3)°, V= 2672. 0A3,Z = 2,Dc = 1. 503 g·cm-33,μ(Moka) = 14. 0 cm-1,T=193 K. Final R=0. 045 for 1943 observed reflections (I≥3σ(I)). In the anion [(MoS4)_2Fe2S2]4- ,the two Fe atoms, each attached with a chelating MoS42- unit, are bridged by two sulfur atoms. The metal atoms are arranged in a linear fashion with Mo-Fe-Fe angle of 179. 1(1)°, and Fe-Fe and Fe-Mo distances of 2. 746(2) and 2. 801(2) A, respectively. The long Fe-S distances (average 2. 246A) in Fe2S2 ring could be a result of the hydrogen-bonding interaction between the sulfur atom and the methanolic hydrogen atom.  相似文献   

20.
Transformations of the edge-bridged double cubane cluster [(Cl4cat)2(Et3P)2Mo2Fe6S8(PEt3)4] (1) under reducing conditions have been investigated as synthetic approaches to the clusters of nitrogenase. Cluster 1 is a versatile precursor to different Mo-Fe-S cluster types. The reaction system 1/K(C14H10) in THF yields the reduced cluster [(Cl4cat)2(Et3P)2Mo2Fe6S8(PEt3)4]1- (2), which as its crystalline Et4N+ salt retains the edge-bridged structure of 1. X-ray structural and M?ssbauer spectroscopic results indicate an unsymmetrical electron distribution with localized [MoFe3S4]2+,1+ cubane-type units. The system 1/2K(C14H10)/2HS- in THF/acetonitrile affords [(Cl4cat)4(Et3P)4Mo4Fe12S20K3(DMF)]5- (3), whose structure was determined as the Ph3PMe+ salt. The cluster consists of two isostructural Mo2Fe6S9 fragments connected by two mu 2-S bridges. Three potassium ions are bound between the two fragments. In each fragment, the iron atoms are present in tetrahedral FeS4 and the molybdenum atoms in octahedral MoO2PS3 coordination units, and two MoFe3(mu 3-S)3 cuboidal units are bridged by a common mu 6-S atom. The fragments have idealized mirror symmetry and are isostructural with two of the fragments present in the previously reported high-nuclearity cluster [(Cl4cat)6(Et3P)6Mo6Fe20S30]8- (4) (Osterloh, F.; Sanakis, Y.; Staples, R. J.; Münck, E.; Holm, R. H. Angew. Chem., Int. Ed. Engl. 1999, 38, 2066). On the basis of overall shape, atom connectivities, and metric features, the Mo2Fe6S9 fragment is a topological analogue of the P-cluster of nitrogenase in the PN (reduced) state. A third cluster type, formed as a minor byproduct in the reaction system leading to 2, was crystallographically identified as [(Cl4cat)2(Et3P)2Mo2Fe6S8(PEt3)4]4-, whose core is made up of two MoFe3(mu 3-S)3 cuboidal units bridged by two mu 2-S atoms and connected by a direct Fe-Fe bond. Full structural details and the redox properties of 2 and 3 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号