首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
Navier-Stokes方程的一种并行两水平有限元方法   总被引:1,自引:1,他引:1  
基于区域分解技巧,提出了一种求解定常Navier-Stokes方程的并行两水平有限元方法.该方法首先在一粗网格上求解Navier-Stokes方程,然后在细网格的子区域上并行求解粗网格解的残差方程,以校正粗网格解.该方法实现简单,通信需求少.使用有限元局部误差估计,推导了并行方法所得近似解的误差界,同时通过数值算例,验证了其高效性.  相似文献   

2.
本文以二维涡度方程为模型,介绍了谱方法和拟谱方法以及它们与差分方法和有限元法相结合的混合解法.这些方法可推广应用于其它一些类似的非线性问题.本文还给出了这些方法的某些数值例子和误差估计结果  相似文献   

3.
该文证明了在二或三维情形下, 当马赫数趋于零时, 一类完全可压缩Navier-Stokes方程的解收敛到相应的完全不可压缩Navier-Stokes方程的解.  相似文献   

4.
基于人工压缩性方法提出—中心与迎风混合的算法,以数值模拟N-S方程的定常/非定常解.对半离散方程的左端采用中心差分, 方程右端数值流量采用迎风Roe近似算法,其精度可达三阶.湍流模式利用Baldwin-Lomax代数模式.计算例子包括二维平板、机翼剖面、扁椭球、颅动脉瘤等.计算结果表明,压力和摩擦系数与实验符合,在分离涡旋区计算值与实验有差别,这或许是由于湍流模式不够精确的缘故.  相似文献   

5.
对二维定常的不可压缩的Navier-Stokes方程的局部和并行算法进行了研究.给出的算法是多重网格和区域分解相结合的算法,它是基于两个有限元空间:粗网格上的函数空间和子区域的细网格上的函数空间.局部算法是在粗网格上求一个非线性问题,然后在细网格上求一个线性问题,并舍掉内部边界附近的误差相对较大的解.最后,基于局部算法,通过有重叠的区域分解而构造了并行算法,并且做了算法的误差分析,得到了比标准有限元方法更好的误差估计,也对算法做了数值试验,数值结果通过比较验证了本算法的高效性和合理性.  相似文献   

6.
王文 《工科数学》1997,13(2):1-6
本应用非线性半群理论构造了不可压缩非牛顿流体非定常流动初边值问题的强解。  相似文献   

7.
本文考虑n维(n=2,3)可压缩流动的带有单向周期边值条件问题的数值解.我们在周期方向采用Fourier谱方法,在非周期方向采用有限元方法,从而构造了一类谱-有限元格式.文中严格分析了计算误差,得到了收敛阶的估计.  相似文献   

8.
间断Galerkin有限元方法非常适合在非结构网格上高精度求解Navier-Stokes方程,然而其十分耗费计算资源.为了提高计算效率,提出了高效的MIMD并行算法.采用隐式时间离散GMRES+LU SGS格式,结合多重网格方法,当地时间步长加速算法收敛.为了保证各处理器间负载平衡,采用区域分解二级图方法划分网格,实现内存合理分配,数据只在相邻处理器间传递.数值模拟了RAE2822翼型和M6黏性绕流,加速比基本呈线性变化且接近理想值.结果表明了该算法能有效减少计算时间、合理分配内存,具有较高的加速比和并行效率,适合于MIMD粗粒度科学计算.  相似文献   

9.
研究了求解不可压缩流动问题的混合Galerkin型方法的稳定性问题,提出了一种在混合Galerkin型方法中满足离散LBB条件的一般性方法,即速度逼近空间维数大于压力逼近空间维数,并且两个逼近空间同时连续时,离散LBB条件可以得到满足.文中以混合有限元方法和混合无单元Galerkin方法为例,通过数值实验,验证了结论的正确性.  相似文献   

10.
两个不同角速度旋转球之间粘性流动问题是地球外部大气流动的简化模型.通过引入球Bessel函数的有理表达式,得到Stokes算子特征值与特征函数的有理表达形式.利用Stokes算子特征函数作为基函数系,对两个旋转球间流动问题进行谱Galerkin逼近.由三模态的Glerkin逼近方程得到—个类Lorenz系统,我们对此系统进行分歧问题和吸引子的讨论,从而得到原问题的稳定性判定.  相似文献   

11.
In these notes we give some examples of the interaction of mathematics with experiments and numerical simulations on the search for singularities.  相似文献   

12.
This paper introduces a three-step Oseen-linearized finite element method for the 2D/3D steady incompressible Navier–Stokes equations with nonlinear damping term. Within this method, we solve a nonlinear problem over a coarse grid followed by solving two Oseen-linearized problems over a fine grid, which possess the same stiffness matrices with only various right-hand sides. We theoretically analyze the stability of the present method, and derive optimal error estimates of the finite element solutions. We conduct a series of numerical experiments which support the theoretical analysis and test the effectiveness of the proposed method. We demonstrate numerically that there is a significant improvement in the accuracy of the approximate solutions over those for the standard two-level method.  相似文献   

13.
This article is concerned about an optimization‐based domain decomposition method for numerical simulation of the incompressible Navier‐Stokes flows. Using the method, an classical domain decomposition problem is transformed into a constrained minimization problem for which the objective functional is chosen to measure the jump in the dependent variables across the common interfaces between subdomains. The Lagrange multiplier rule is used to transform the constrained optimization problem into an unconstrained one and that rule is applied to derive an optimality system from which optimal solutions may be obtained. The optimality system is also derived using “sensitivity” derivatives instead of the Lagrange multiplier rule. We consider a gradient‐type approach to the solution of domain decomposition problem. The results of some numerical experiments are presented to demonstrate the feasibility and applicability of the algorithm developed in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

14.
In this paper a new local discontinuous Galerkin method for the incompressible stationary Navier-Stokes equations is proposed and analyzed. Four important features render this method unique: its stability, its local conservativity, its high-order accuracy, and the exact satisfaction of the incompressibility constraint. Although the method uses completely discontinuous approximations, a globally divergence-free approximate velocity in is obtained by simple, element-by-element post-processing. Optimal error estimates are proven and an iterative procedure used to compute the approximate solution is shown to converge. This procedure is nothing but a discrete version of the classical fixed point iteration used to obtain existence and uniqueness of solutions to the incompressible Navier-Stokes equations by solving a sequence of Oseen problems. Numerical results are shown which verify the theoretical rates of convergence. They also confirm the independence of the number of fixed point iterations with respect to the discretization parameters. Finally, they show that the method works well for a wide range of Reynolds numbers.

  相似文献   


15.
A very simple and efficient finite element method is introduced for two and three dimensional viscous incompressible flows using the vorticity formulation. This method relies on recasting the traditional finite element method in the spirit of the high order accurate finite difference methods introduced by the authors in another work. Optimal accuracy of arbitrary order can be achieved using standard finite element or spectral elements. The method is convectively stable and is particularly suited for moderate to high Reynolds number flows.

  相似文献   


16.
A fully discrete version of the velocity-correction method, proposed by Guermond and Shen (2003) for the time-dependent Navier-Stokes equations, is introduced and analyzed. It is shown that, when accounting for space discretization, additional consistency terms, which vanish when space is not discretized, have to be added to establish stability and optimal convergence. Error estimates are derived for both the standard version and the rotational version of the method. These error estimates are consistent with those by Guermond and Shen (2003) as far as time discretiztion is concerned and are optimal in space for finite elements satisfying the inf-sup condition.

  相似文献   


17.
Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these models, the analysis of commutation errors in LES models as well as other results from mathematical analysis.  相似文献   

18.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

19.
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress‐velocity formulation. The pseudostress is approximated by the Raviart‐Thomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi‐optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号