首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silica nanospheres have been produced by a novel technique where surface Si oxidation states can be adjusted using the ratio of metalloid ions/metalloid atoms in the starting mixture. When the proportions of Si4+/Si0 are equal in the synthesis, the resulting solid is considerably more reactive than Cab-O-Sil toward the phenol hydroxylation reaction and the surface shows an average Si oxidation state of +3. On the other hand, those silica nanospheres, produced from a mixture of Si4+/Si0 = 0.25, showed a lower reactivity comparable to that of Cab-O-Sil which XPS demonstrates has a surprisingly low average Si oxidation state close to +1. We speculate that the silicon surface oxidation state and the number of surface silanol groups play important roles in determining the activity of the solid toward the phenol hydroxylation reaction. In expanding our earlier report4 on the copper-silica system, we establish that the surface chemistry of the silica nanospheres is apparently different from that of fumed, amorphous silica. These results suggest that we are developing a technique that can be generalized to create supported, mixed metal oxides having tunable average surface oxidation states.  相似文献   

2.
Large Au nanoparticles with an average size of approximately 10 nm supported on inert SiO(2) become active in low-temperature CO oxidation after the addition of NaNO(3). The catalyst structures have been characterized in detail by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray absorption spectroscopy. The NaNO(3) additive in Au/SiO(2) catalysts does not lead to the formation of fine Au nanoparticles, which are generally considered to be inevitable in low-temperature CO oxidation catalyzed by gold, nor does it alter the electronic structure of Au. The NaNO(3)-induced restructuring of large Au nanoparticles was proposed to create low-coordinated Au sites on the surface capable of catalyzing low-temperature CO oxidation. These results experimentally prove that the activity of supported Au nanoparticles in low-temperature CO oxidation could solely arise from their geometric structure, which greatly deepens the fundamental understandings of Au nanocatalysis.  相似文献   

3.
Au-TiO(2) interface on silica support was aimed to be produced in a controlled way by use of Au hydrosol. In method A, the Au colloids were modified by hydrolysis of the water-soluble Ti(IV) bis(ammoniumlactato)dihydroxide (TALH) precursor and then adsorbed on Aerosil SiO(2) surface. In method B, Au sol was first deposited onto the SiO(2) surface and then TALH was adsorbed on it. Regular and high-resolution transmission electron microscopy (TEM and HRTEM) and energy dispersive spectrometry (EDS) analysis allowed us to conclude that, in method A, gold particles were able to retain the precursor of TiO(2) at 1.5 wt % TiO(2) loading, but at 4 wt % TiO(2) content the promoter oxide appeared over the silica surface as well. With method B, titania was detected on silica at each TiO(2) concentration. In Au-TiO(2)/SiO(2) samples, the stability of Au particles against sintering was much higher than in Au/TiO(2). The formation of an active Au-TiO(2) perimeter was proven by the greatly increased CO oxidation activity compared to that of the reference Au/SiO(2).  相似文献   

4.
X-ray absorption near-edge spectra and temperature-programmed oxidation and reduction data demonstrate that Au(I) and Au(0) are both present in working MgO-supported gold catalysts for CO oxidation. EXAFS data indicate gold clusters with essentially the same average diameter (about 30 A) in each catalyst sample. Thus, the results provide no evidence of an effect of gold cluster size on the catalytic activity, but both the catalytic activity and the surface concentration of Au(I) were found to decrease with increasing CO partial pressure (as Au(0) was increasingly formed), demonstrating that the catalytic sites incorporate Au(I).  相似文献   

5.
The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H2), are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 approximately 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H2 treatment at low temperatures (100 approximately 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (>300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 approximately 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (>300 degrees C) is still higher than that directly pretreated with H2. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.  相似文献   

6.
The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.  相似文献   

7.
Gold catalysts supported on cerium oxide were prepared by solvated metal atom dispersion (SMAD), by deposition-precipitation (DP), and by coprecipitation (CP) methods and were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The catalytic activity was tested in the CO oxidation reaction. The structural and surface analyses evidenced the presence of a modified ceria phase in the case of the DP sample and the presence of pure ceria and gold metal crystallites in the case of the SMAD and CP samples. The DP sample, after a mild treatment in air at 393 K, exhibited only ionic gold, and it was very active below 273 K. By comparing the activities of the different catalysts, it is suggested that the presence of small gold particles, as obtained by the SMAD technique, is not the main requisite for the achievement of the highest CO conversion. The strong interaction between ionic gold and ceria, by enhancing the ceria surface oxygen reducibility, may determine the particularly high activity.  相似文献   

8.
KOH改性对TiO2结构及其负载金催化剂CO氧化反应活性的影响   总被引:1,自引:0,他引:1  
以不同浓度KOH处理钛酸丁酯水解产物得到KOH改性TiO2载体.使用N2吸附、热重-差热分析-示差扫描量热、X射线粉末衍射、紫外可见漫反射光谱、透射电镜及X射线光电子能谱研究了KOH对TiO2结构、形貌的影响.结果表明,较低浓度的KOH对TiO2有较显著的改性效果,改变了TiO2的电子结构.对KOH-TiO2负载的金催...  相似文献   

9.
To systematically evaluate the quality of SiNx films in multi-stacked structures, we investigated the effects of post-deposition annealing (PDA) on the film properties of SiNx within the SiO2/SiNx/SiO2/Si stacked structure by performing X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), Fourier transform infrared (FT-IR) spectroscopy, and scanning transmission electron microscope–electron energy loss spectroscopy (STEM-EELS) analyses. The XPS results showed that PDA induces the oxidation of the SiNx layer. In particular, new finding is that Si-rich SiNx in the SiNx layer is preferentially oxidized by PDA even in multi-stacked structure. The XRR results showed that the SiNx layer becomes thinner, whereas the interface layer between the SiNx layer and Si becomes thicker. It is concluded by STEM-EELS and XPS that this interface layer is SiON layer. The density of N–H and Si–H bonding within the stacked structure strongly depends on the PDA temperature. Our study helps elucidate the properties of SiNx films in stacked structures from various perspectives.  相似文献   

10.
Si/SiO2 superlattices are recently under investigation to add optical functionality to silicon based microelectronics. In such superlattices quantum-confinement should drive Si to become a good light emitter. Emission properties can be further improved and controlled by placing the emitter in optical microcavities. In this paper emission properties of (Si/SiO2), superlattices grown by Low Pressure Chemical Vapour Deposition will be compared with the ones obtained by other growth techniques and the origin of the emission will be discussed. Emission properties can be further improved and controlled by placing the emitter in optical microcavities. Optical properties of microcavities produced with standard complementary metal-oxide-semiconductor techniques containing Si/SiO2 superlattices as light emitter will be reviewed and a comparison between properties estimated from calculations and experiments will be given.  相似文献   

11.
开发室温CO氧化催化剂的主要挑战是CO自中毒和慢的表面动力学,同时湿气的存在也可导致催化剂失活.本文开发了高活性CeO2促进的Pt基催化剂4%Pt-12%CeO2/SiO2,用于室温湿气(湿度10%?90%,25°C)中CO氧化反应,在低CO浓度(<500 ppm)和高CO浓度(>2500 ppm)时,CO转化率高于99%.优化了催化剂制备变量,如Pt和CeO2负载量、CeO2沉积方法、CeO2和Pt前驱体的干燥和焙烧条件.采用CO/H2化学吸附、O2-H2滴定、X射线衍射和BET比表面积测定表征了催化剂的表面特性,并将其与催化剂活性相关联.结果表明,CeO2沉积方法对催化剂活性影响显著,当用浸渍法沉积CeO2时,所得催化剂的反应速率(5.77μmol/g/s)比用沉积沉淀法(1.96μmol g?1 s?1)或CeO2嫁接法(1.31μmol g?1 s?1)制得催化剂的高3倍.O2-H2滴定结果表明,当用浸渍法沉积CeO2时,CeO2和Pt的紧密结合导致了催化剂的高活性.催化剂载体的选择也非常重要,硅胶负载的催化剂活性(5.77μmol g?1 s?1)是氧化铝负载的(1.05μmol g?1 s?1)5倍.当反应受内扩散控制时,催化剂载体的粒径和孔结构影响非常大.另外,CeO2和Pt前驱体的干燥和焙烧条件对催化剂活性的影响至关重要.当Pt和CeO2含量分别大于2.5和15 wt%时,所得催化剂在室温条件下活性高(TOF>0.02 s?1),稳定性好(反应15 h,CO转化率≥99%).  相似文献   

12.
13.
Cobalt-containing particles are synthesized on the surface of silicon dioxide micrograins prepared by the Stöber-Fink method. The composition and structure of nanoparticles are determined by transmission electron microscopy, X-ray diffraction analysis, and EXAFS. The average size of cobalt nanoparticles in the samples is found to be 14 ± 5 nm. The resulting composites are shown to be ferromagnetics with low specific magnetization values.  相似文献   

14.
The effects of CeO2 contents and silica carder porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 catalysts in CO oxidation were investigated. The catalysts were characterized by N2 adsorption/desorption at low temperature, X-ray diffraction (XRD), temperature-programmed reduction by H2 (H2-TPR), oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS). The results suggested that, the ceria content and the porosity of SiO2 carder possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts. When appropriate content of CeO2(Ce content ≤8 wt%) was added, the catalytic activity was greatly enhanced. In the catalyst supported on silica carrier with larger pore diameter, higher dispersion of CuO was observed, better agglomeration-resistant capacity was displayed and more lattice oxygen could be found, thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.  相似文献   

15.
An unexpected oxygen-assisted reduction of cationic Au species by CO was found on a Au/SiO(2) catalyst at room temperature and the produced metallic Au species plays an essential role in CO oxidation on Au/SiO(2).  相似文献   

16.
负载型Au催化剂中金与载体间存在相互作用,载体性质能够影响Au纳米颗粒分散度及稳定性.本文通过表面溶胶-凝胶(SSG)法制备了TiOx/SiO2复合载体,以期增加氧化物载体表面配位不饱和度从而使其具有较高的金属分散性,并利用低能离子散射(LEIS)谱、X射线光电子能谱(XPS)、X射线衍射(XRD)、透射电子显微镜(TEM)及N2物理吸附(BET)等手段对载体及催化剂进行表征分析.实验表明TiOx/SiO2复合载体表面TiOx分散性良好,没有形成明显的TiO2晶相,且与SiO2间形成Ti―O―Si键.与Au/TiO2相比, Au/TiOx/SiO2催化剂中Au纳米颗粒的分散性更好,因而CO氧化活性显著提高. TiOx/SiO2复合载体上的TiO2膜是Au的主要表面键合位,导致Au与载体间相互作用增强,从而使得Au纳米颗粒抗烧结能力提高,同时催化剂反应稳定性得到改善.  相似文献   

17.
18.
The glass-forming reactions between sodium carbonate (Na2CO3) and silica (SiO2) have been investigated by 23Na, 29Si, and 13C magic-angle spinning (MAS) NMR spectroscopy. The multinuclear MAS NMR approach identifies and quantifies reaction products and intermediates, both glassy and crystalline. A series of powdered batches of initial composition Na2CO3.xSiO2 (x = 1, 2) corresponding to a sodium metasilicate (Na2SiO3) and sodium disilicate (Na2Si2O5) stoichiometry were investigated after periods of isothermal and nonisothermal heat treatments at different temperatures. Analysis of the 23Na quadrupolar coupling parameters has identified the early reaction product in all cases as crystalline Na2SiO3. In the nonisothermal experiment, this reaction is preceded by an early silica-rich melt phase formed around 850 degrees C. The early reactions are controlled by solid-state Na+ diffusion across the reaction zone in the grain interface layer. Crystalline Na2SiO3 precipitates in the interface layer, increasing its thickness between the Na2CO3 and the SiO2 grains and slowing down the rate of Na+ migration. This creates a secondary phase, which is temperature dependent. At low temperatures, where Na+ migration is impaired, the production of Na2SiO3 ceases and silica-richer phases are precipitated. In the case of the sodium disilicate batch, where excess SiO2 is present, a secondary reaction of Na2SiO3 with SiO2 forming a glassy phase is observed. A transient carbon-bearing phase has been identified by 13C NMR as a NaCO3- complex loosely bound to bridging oxygens in the silicate network at the SiO2 grain surface.  相似文献   

19.
20.
Zinc-doped and undoped TiO2 photocatalysts were synthesized via sol-gel techniques. Doping of TiO2 with M2+ (M-Zn) was intended to create tail states within the band gap of TiO2. These can subsequently be employed as efficient photocatalysts which can effectively decompose organic contaminants only with visible light activation. The structure, physico-chemical and optical properties of the products were characterized by using the X-ray diffraction (XRD), Raman spectra, UV-vis diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. Doping shifts the optical absorption edge to the visible region and decreases the charge-transfer resistance. Under visible light, the composite nanoparticles very efficiently catalyze the MB dye. Results implied that Zn doping increased photoinduced charge transfer rate, and the use of described methods is a powerful tool toward predicting and understanding the photocatalytic processes and behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号