首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
航天光学遥感器在轨调制传递函数神经网络评价方法   总被引:2,自引:0,他引:2  
通过对航天光学遥感器在轨调制传递函数模型和遥感图像的分析,找出遥感图像中与调制传递函数有关的特征信息,采用神经网络为工具,完成利用遥感器传输下来的任意一幅地面景物图像进行调制传递函数的评价。首先模拟出包含不同调制传递函数等级的遥感图像,组成训练样本集,再从图像中分别提取出直接与调制传递函数有关的特征参量和与景物结构有关的特征参量,作为神经网络的输入,网络通过对训练样本集中模拟出的大量调制传递函数已知的遥感图像训练后,当再次输入一幅调制传递函数未知的遥感图像时,便能够正确估计出其调制传递函数值。这种方法不需要在地面铺设靶标或预先获得调制传递函数已知的同一地面景物的航空图像作为参考,只需获得任意一幅地面景物图像即可完成对遥感器调制传递函数的评价。实验结果表明,当不考虑噪声对调制传递函数的影响时,对调制传递函数的评价误差约为6%,而在考虑噪声时,评价误差约为9%。  相似文献   

2.
提出一种基于神经网络的航天光学遥感器在轨信噪比的的测试方法。通过模拟得到了大量的包含有不同信噪比等级的遥感图像,并将其作为网络训练和测试的样本。通过对遥感图像进行分析,找到了分别与景物结构和噪声有关的特征向量,并将其作为神经网络的输入。在对大量样本图片进行训练后,可完成对由遥感器传输下来的任意一幅地面景物图像进行信噪比的测试,从而避免了传统方法对特定地面景物目标在成像测量中的诸多弊端,平均测量误差约为10%。  相似文献   

3.
提出一种基于阵列点源的光学遥感卫星像质评价方法,以轻小型、自动化的反射点源阵列作为检测参照目标,最小二乘法二维高斯模型拟合阵列点源影像获得像点坐标,结合地面点源位置测量获得遥感器地面像元分辨率;以点源影像像点坐标为基准,对阵列点源遥感影像数据进行位置配准与高斯模型拟合获得成像系统点扩散函数与调制传递函数值。试验结果表明:像点坐标的共线误差小于0.002像素,地面像元分辨率的相对偏差优于6.5‰,阵列点源可以综合实现光学遥感卫星的像质评价与辐射定标。  相似文献   

4.
调制传递函数(MTF)是高空间分辨率光学卫星相机的重要参数之一.提出一种基于周期靶标的直接检测方法,从遥感影像数据计算得到成像系统在奈奎斯特频率处的MTF值,同时利用参数化模型获取全频率的MTF曲线.试验结果表明,在均匀的暗背景上,沿遥感器的垂轨方向与顺轨方向上分别布设5组非整像素(地面像元分辨率)间隔的三线靶标,并在...  相似文献   

5.
用数理统计方法,推导出波动光学MTF数值计算的误差估计式,它适用于对不同的数值计算方法进行自相关积分所求得的MTF值进行误差估计.本文根据波动光学的基本性质,提出了新的MTF数值计算方法,它具有较高的数值精度,更可观的计算量大大减少.  相似文献   

6.
在红外遥感图像复原过程中,一般是采用刃边法获得调制传递函数的。然而,该方法存在图像刃边位置难以确定,以及提取的像素点较少等缺点。为了解决上述问题,实验设计了一种新的调制传递函数测量方法,通过直接移动刃边来观察一个像素点在刃边附近灰度值的变化情况,然后对这些数据点依次进行拟合、微分、傅里叶变换等步骤就得到系统的调制传递函数,最后,用逆滤波和维纳滤波进行图像复原。实验结果表明,通过该方法得到MTF后进行图像复原效果较好。  相似文献   

7.
航天TDI-CCD相机的MTF和像质分析   总被引:9,自引:1,他引:8  
TDI- CCD相机在航天遥感中得到了越来越广泛的应用 ,但航天 TDI- CCD相机的像移是难以完全消除的或是不可避免的。推导和分析了 TDI- CCD相机的像移以及各种像移的 MTF表达式 ;参照美国国家图像解释分级标准( NIIRS) ,分析了像移量对像质的影响。结果表明 :当采用 96级延迟积分的 TDI- CCD器件时 ,同步误差只有小于 2 % ,成像质量才能得到保证 ,这与滚筒式扫描成像实验结果相吻合  相似文献   

8.
考虑到大气对遥感影像成像的模糊作用,在常用刃边法测量调制传递函数(MTF)的基础上,在大气校正中对邻近像元效应进行校正来去除大气MTF的影响,在真实的表反射率图像上利用刃边法计算MTF,结果更加接近实验室测量值,客观反映了传感器的MTF。此外,通过模拟实验分析了气溶胶光学厚度对在轨测量MTF的影响,表明该方法比传统刃边法更加适合在轨测量传感器MTF,更客观反映了传感器真实成像特性。  相似文献   

9.
为了克服传统的基于周期靶标的在轨调制传递函数测量方法中测量精度过分依赖靶标组数的问题,通过对传统方法的原理进行深入剖析,提出了一种新的测量方法。在获得多组具有一定相位差异的地面周期靶标图像数据后,充分利用所有采样数据及相应相位关系,进行参数拟合,得到地面靶标经成像系统后的调制度,对比输入调制度计算调制传递函数。仿真及实际光学遥感相机的实验结果表明:仅利用两组靶标,理论上所提方法的测量精度可优于0.5%;测试图像噪声、靶标周期匹配偏差、测量角度匹配偏差等因素对测量误差的影响均在4%以内,该测量方法的适应性较高。所提方法的计算结果与倾斜刃边法具有良好的一致性,可以应用于高分辨率光学遥感相机的在轨调制传递函数测量。  相似文献   

10.
考虑到大气对遥感影像成像的模糊作用,在常用刃边法测量调制传递函数(MTF)的基础上,在大气校正中对邻近像元效应进行校正来去除大气MTF的影响,在真实的表反射率图像上利用刃边法计算MTF,结果更加接近实验室测量值,客观反映了传感器的MTF。此外,通过模拟实验分析了气溶胶光学厚度对在轨测量MTF的影响,表明该方法比传统刃边法更加适合在轨测量传感器MTF,更客观反映了传感器真实成像特性。  相似文献   

11.
摆扫式TDI-CCD航空相机传感器MTF分析   总被引:1,自引:0,他引:1  
范秀英  鲍金河  张勇 《光学技术》2012,38(5):634-637
TDI-CCD与普通线阵CCD相比具有很多优点,因而广泛应用于航空航天成像领域。在介绍TDI-CCD特点和摆扫式TDI-CCD航空相机扫描成像原理的基础上,分析了扫描像移的大小及行周期,推导出了由几何尺寸、电荷转移损失率、电荷分立运动、速度失配等因素引起图像传感器的调制传递函数退化表达式,给出了传感器线列方向和TDI方向的调制传递函数,提出了提高传感器调制传递函数的几种方法,对TDI-CCD航空相机整机设计提供了参考。  相似文献   

12.
为了能对红外热成像系统的性能进行准确的评价,必须对其MTF进行准确测试。利用高精度双黑体反射靶标评估系统,并依据刀口靶测试原理,首先在计算机中进行微分运算,获得线扩展函数,然后再进行傅里叶变换,最终获得MTF。通过对CEDIT ⅡA型热像仪MTF的测试和分析,发现MTF的测试主要受输入差分信号强度,脉冲电平的去除与否,以及采集到的信号是否滤波等因素的影响。该测试评估系统能保证背景辐射的均匀性和稳定性,且受环境温度变化的影响极小,因此可大大提高测量的准确性和可靠性。  相似文献   

13.
激光散斑在MTF测试中的应用   总被引:1,自引:0,他引:1  
论述激光散斑的产生方法及其数据处理,并给出数据处理部分的简单流程图。  相似文献   

14.
巩盾 《中国光学》2015,8(5):714-724
将遥感技术应用到测绘当中是现代地质测绘技术的发展趋势,随着光学载荷分辨率的不断提高,遥感测绘已经成为社会发展和国民经济发展的重要保障。光学载荷决定了测绘空间遥感器的分辨率、测绘精度、卫星平台体积与重量,是遥感器的核心部分。本文对高成像质量透射光学系统、同轴三反光学系统、离轴三反系统等常用的空间遥感测绘光学系统的结构形式和光学性能分别进行了介绍,并对处于研发阶段的新型空间反射光学系统的结构形式和光学性能进行了展望。分析认为,根据不同的应用环境和技术指标,合理选用不同种类的遥感测绘光学系统,可以最大程度利用平台资源,满足遥感测绘需求。  相似文献   

15.
凝视热成像系统MTF测试不同于扫描系统,必须有解决其空间采样的混淆特性。在传统的线扩展函数法基础上发展起来的方法主要有:缝扫描法、最值法、斜斜法。实际使用中,前两种方法需要精确的定位技术,而斜缝法的数据处理较复杂。本文主要论述斜缝测试法,分析其工作原理,介绍其数据处理技术。  相似文献   

16.
耿涛  王彪  滕东东  袁威  凌福日 《光学技术》2006,32(5):660-662
影响体全息存储系统中读出图像误码率的因素很多,其中输入与输出器件SLM、CCD的性能以及它们信号匹配关系起着关键的作用。针对这一实际问题,利用CCD成像系统的调制传递函数理论和数值模拟方法,通过对4f系统中周期性SLM像素分布的CCD输出响应分析,研究了SLM和CCD的填充因子、对比度、位相匹配关系对读出图像误码率的影响,并给出计算机仿真结果。  相似文献   

17.
非理想情况下的CCD调制传递函数的综合表示方法   总被引:4,自引:0,他引:4  
宋敏  郐新凯  郑亚茹 《光学技术》2003,29(6):720-722
从理论上讨论了沟道类型对CCD调制传递函数的影响,并在前期工作的基础上给出了非理想情况下的CCD调制传递函数的综合表示方法。利用数值模拟的方法对非理想情况下的CCD调制传递函数与理想情况下的CCD调制传递函数进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号