首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Dislocations are thought to be the principal mechanism of high ductility of the novel B2 structure intermetallic compounds YAg and YCu.In this paper,the edge dislocation core structures of two primary slip systems 〈100 〉{010} and 〈100 〉 {011} for YAg and YCu are presented theoretically within the lattice theory of dislocation.The governing dislocation equation is a nonlinear integro-differential equation and the variational method is applied to solve the equation.Peierls stresses for 〈100 〉 {010} and 〈100 〉 {011} slip systems are calculated taking into consideration the contribution of the elastic strain energy.The core width and Peierls stress of a typical transition-metal aluminide NiAl is also reported for the purpose of verification and comparison.The Peierls stress of NiAl obtained here is in agreement with numerical results,which verifies the correctness of the results obtained for YAg and YCu.Peierls stresses of the 〈100 〉 {011} slip system are smaller than those of〈100 〉 {010} for the same intermetallic compounds originating from the smaller unstable stacking fault energy.The obvious high unstable stacking fault energy of NiAl results in a larger Peierls stress than those of YAg and YCu although they have the same B2 structure.The results show that the core structure and Peierls stress depend monotonically on the unstable stacking fault energy.  相似文献   

2.
The two 5-site potentials from ab initio calculations at the theoretical level CCSD(T) with correlation consistent basis sets aug-cc-pVmZ (with m?=?4, 34) have been constructed from oxygen. The extrapolation ab initio energies were approximated by the basis sets aug-cc-pVmZ (m?=?3, 4). These two potentials were constructed by using the ab initio intermolecular energy values and a non-linear least-squares fitting method. The second virial coefficients of oxygen were determined to demonstrate the accuracy of these ab initio 5-site potentials. These ab initio potentials were employed to estimate the thermodynamic properties of the vapor–liquid equilibria by GEMC simulation. The influence of ab initio potential alone and plus 3-body interaction Axilrod-Teller potential was investigated within GEMC simulation from 80?K to 140?K. The discrepancy between them is insignificant. This showed that the two 2-body 5-site potential functions can also be used together with the 3-body interaction Axilrod-Teller potential to generate the accurate thermodynamic properties of the liquid–vapor equilibria.  相似文献   

3.
Let L = ?Δ? W be a Schrödinger operator with a potential $W\in L^{\frac{n+1}{2}}(\mathbb{R}^n)Let L = −Δ− W be a Schr?dinger operator with a potential , . We prove that there is no positive eigenvalue. The main tool is an Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to variable coefficient operators with long range and short range potentials and gradient potentials.The first author was partially supported by DFG grant KO1307/1 and also by MSRI for Fall 2005The second author was partially supported by NSF grants DMS0354539 and DMS 0301122 and also by MSRI for Fall 2005  相似文献   

4.
Hardness and slip systems by an indentation method were investigated on different habit planes of orthorhombic hen egg-white lysozyme (O-HEWL) crystals containing water. A dependence of the hardness on the water-evaporation time exhibits three stages as incubation, transition and saturated ones, as tetragonal (T)-HEWL crystals reported previously. The hardness values of (1 1 0), (0 1 0) and (0 1 1) habit planes of O-HEWL in the incubation stage or wet condition exhibits 6, 8 and 10 MPa, respectively. The hardness depends on indented planes but it is independent of the air-humidity and crystal volumes. These values correspond to the intrinsic hardness for O-HEWL crystals containing water. In the incubation stage, the slip traces are clearly observed around the indentation mark and the corresponding six kinds of slip systems are identified to be {0 1 1}<1 0 0>, {1 1 0}<1 1 0>, {0 1 1}<0 1 1>, {1 1 0}<0 0 1>, {1 0 0}<0 0 1> and {0 1 0}<0 0 1>.  相似文献   

5.
Using the coupled cluster method we investigatespin-s J 1-J′ 2 Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, two-dimensional triangular lattice for the two cases where the spin quantum number s = 1 and s = $\frac{3} {2}$\frac{3} {2}. With respect to an underlying square-lattice geometry the model has antiferromagnetic (J 1 > 0) bonds between nearest neighbours and competing (J′ 2 > 0) bonds between next-nearest neighbours across only one of the diagonals of each square plaquette, the same diagonal in each square. In a topologically equivalent triangular-lattice geometry, the model has two types of nearest-neighbour bonds: namely the J′ 2κJ 1 bonds along parallel chains and the J 1 bonds producing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at one limit (κ = 0) and a set of decoupled chains at the other limit (κ → ∞), with the isotropic HAF on the triangular lattice in between at κ = 1. For both the spin-1 model and the spin-$\frac{3} {2}$\frac{3} {2} model we find a second-order type of quantum phase transition at κ c = 0.615 ± 0.010 and κ c = 0.575 ± 0.005 respectively, between a Néel antiferromagnetic state and a helically ordered state. In both cases the ground-state energy E and its first derivative dE/ are continuous at κ = κ c , while the order parameter for the transition (viz., the average ground-state on-site magnetization) does not go to zero there on either side of the transition. The phase transition at κ = κ c between the Néel antiferromagnetic phase and the helical phase for both the s = 1 and s = $\frac{3} {2}$\frac{3} {2} cases is analogous to that also observed in our previous work for the s = $\frac{1} {2}$\frac{1} {2} case at a value κ c = 0.80 ± 0.01. However, for the higher spin values the transition appears to be of continuous (second-order) type, exactly as in the classical case, whereas for the s = $\frac{1} {2}$\frac{1} {2} case it appears to be weakly first-order in nature (although a second-order transition could not be ruled out entirely).  相似文献   

6.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

7.
Al single crystals oriented for single slip were cyclically deformed under constant plastic strain amplitudes between 1?×?10?3 and 5?×?10?2 at 77?K. Al single crystals showed hardening to saturation at all applied shear stress amplitudes. The resultant cyclic stress–strain curve (CSSC) showed a stress plateau in a range of plastic strain amplitude from 2?×?10?3 to 2?×?10?2. Surface observation revealed that multiple slip systems were active even at the strain amplitude in the plateau region. At plastic strain amplitudes corresponding to the plateau of the CSSC, persistent slip bands (PSBs) were formed parallel to the primary slip plane. In the PSBs, well-developed dislocation walls parallel to the {100} planes were observed. The microstructure in the PSBs was explained by the fact of multiple activation of the primary and critical slip systems. The above results indicate that the high stacking fault energy of Al is an important factor affecting the fatigue behaviour even at 77?K.  相似文献   

8.
A new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form $ V(r,\theta ) = \tfrac{1} {8}\kappa r_e^2 \left( {\tfrac{r} {{r_e }} - \tfrac{{r_e }} {r}} \right)^2 + \tfrac{{\beta cos^2 \theta }} {{r^2 sin^2 \theta }} A new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form . The energy eigenvalues and eigenfunctions of the bound-states for the Schr?dinger equation in D-dimensions for this potential are obtained analytically by using the Nikiforov-Uvarov method. The radial and angular parts of the wave functions are obtained in terms of orthogonal Laguerre and Jacobi polynomials. We also find that the energy of the particle and the wave functions reduce to the energy and the wave functions of the bound-states in three dimensions.   相似文献   

9.
Given a one dimensional perturbed Schrödinger operator H =  ? d 2/dx 2 + V(x), we consider the associated wave operators W  ± , defined as the strong L 2 limits $\lim_{s\to\pm\infty}e^{isH}e^{-isH_{0}}Given a one dimensional perturbed Schr?dinger operator H = − d 2/dx 2 + V(x), we consider the associated wave operators W ± , defined as the strong L 2 limits . We prove that W ± are bounded operators on L p for all 1 < p < ∞, provided , or else and 0 is not a resonance. For p = ∞ we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.  相似文献   

10.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

11.
Abstract

The grain refinement and texture evolution in the surface gradient microstructure of a Ni-based superalloy induced by high speed machining was studied in this research. The direct evidence of grain refinement induced by dislocation–twin interaction was revealed and the detailed grain refinement process was summarised as deformation twinning, dislocation-twin reaction, localied thinning of nanotwin lamellae and final fracture. The underlying dislocation–twin interaction mechanism was elucidated from the crystallographic perspective. Using electron backscatter diffraction and precession electron diffraction techniques, a multiscale texture analysis covering undeformed coarse grain region, ultrafine grain region and nanograin region was carried out. The texture evolution with decreasing depth to the machined surface was identified as cube in the bulk interior and a mixture of rotated cube {0?0?1}<1?1?0>, cube {1?0?0}<0?0?1>, copper {1?1?2}<1?1?1 > and Goss {1?1?0}<0?0?1> textures in the topmost 1.3-μm-thick nanograin layer. The intrinsic thermomechanical effects of high precision machining are responsible for crystallographic texture transformation.  相似文献   

12.
Using DFT calculations, this study investigates the pressure-dependent variations of elastic anisotropy in the following SnO2 phases: rutile-type (tetragonal; P42/mnm), CaCl2-type (orthorhombic; Pnnm)-, α-PbO2-type (orthorhombic; Pbcn)- and fluorite-type (cubic; Fm-3m). Experimentally, these polymorphs undergo sequential structural transitions from rutile-type → CaCl2-type → α-PbO2-type → fluorite-type with increasing pressure at 11.35, 14.69 and 58.22 GPa, respectively. We estimate the shear anisotropy (A1 and A3) on {1?0?0} and {0?0?1} crystallographic planes of the tetragonal phase and (A1, A2 and A3) on {1?0?0}, {0?1?0} and {0?0?1} crystallographic planes of the orthorhombic phases. The rutile-type phase shows strongest shear anisotropy on the {0?0?1} planes (A2 > 4.8), and the degree of anisotropy increases nonlinearly with pressure. In contrast, the anisotropy is almost absent on the {1?0?0} planes (ie A1 ~ 1) irrespective of the pressure. The CaCl2-type phase exhibits similar shear anisotropy behaviour preferentially on {0?0?1} (A3 > 5), while A1 and A2 remain close to 1. The α-PbO2-type phase shows strikingly different elastic anisotropy characterised by a reversal in anisotropy (A3 > 1 to < 1) with increasing pressure at a threshold value of 38 GPa. We provide electronic density of states and atomic configuration to account for this pressure-dependent reversal in shear anisotropy. Our study also analyses the directional Young’s moduli for the tetragonal and orthorhombic phases as a function of pressure. Finally, we estimate the band gaps of these four SnO2 phases as a function of pressure which are in agreement with the previous results.  相似文献   

13.
K. Kang  W. Cai 《哲学杂志》2013,93(14-15):2169-2189
Fracture of silicon and germanium nanowires in tension at room temperature is studied by molecular dynamics simulations using several interatomic potential models. While some potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict ductile fracture initiated by dislocation nucleation and slip. A simple parameter based on the ratio between the ideal tensile strength and the ideal shear strength is found to correlate very well with the observed brittle versus ductile behaviours for all the potentials used in this study. This parameter is then computed by ab initio methods, which predict brittle fracture at room temperature. A brittle-to-ductile transition (BDT) is observed in MD simulations at higher temperature. The BDT mechanism in semiconductor nanowires is different from that in the bulk, due to the lack of a pre-existing macrocrack that is always assumed in bulk BDT models.  相似文献   

14.
Let H = ?Δ + V, where V is a real valued potential on ${\mathbb {R}^2}$ satisfying ${\|V(x)|\lesssim \langle x \rangle^{-3-}}$ . We prove that if zero is a regular point of the spectrum of H = ?Δ + V, then $${\| w^{-1} e^{itH}P_{ac}f\|_{L^\infty(\mathbb{R}^2)} \lesssim \frac{1}{|t|\log^2(|t|)} \| w f\|_{L^1(\mathbb{R}^2)},\,\,\,\,\,\,\,\, |t| \geq 2}$$ , with w(x) = (log(2 + |x|))2. This decay rate was obtained by Murata in the setting of weighted L 2 spaces with polynomially growing weights.  相似文献   

15.
One of the best understood families of logarithmic onformal field theories consists of the (1, p) models (p =  2, 3, . . .) of central charge c 1, p =1 ? 6(p ? 1)2/p. This family includes the theories corresponding to the singlet algebras ${\mathcal{M}(p)}$ and the triplet algebras ${\mathcal{W}(p)}$ , as well as the ubiquitous symplectic fermions theory. In this work, these algebras are realised through a coset construction. The ${W^{(2)}_n}$ algebra of level k was introduced by Feigin and Semikhatov as a (conjectured) quantum hamiltonian reduction of ${\widehat{\mathfrak{sl}}(n)_k}$ , generalising the Bershadsky–Polyakov algebra ${W^{(2)}_3}$ . Inspired by work of Adamovi? for p = 3, vertex algebras ${\mathcal{B}_p}$ are constructed as subalgebras of the kernel of certain screening charges acting on a rank 2 lattice vertex algebra of indefinite signature. It is shown that for p≤5, the algebra ${\mathcal{B}_p}$ is a quotient of ${W^{(2)}_{p-1}}$ at level ?(p ? 1)2/p and that the known part of the operator product algebra of the latter algebra is consistent with this holding for p> 5 as well. The triplet algebra ${\mathcal{W}(p)}$ is then realised as a coset inside the full kernel of the screening operator, while the singlet algebra ${\mathcal{M}(p)}$ is similarly realised inside ${\mathcal{B}_p}$ . As an application, and to illustrate these results, the coset character decompositions are explicitly worked out for p =  2 and 3.  相似文献   

16.
H. Nemura 《Few-Body Systems》2011,50(1-4):105-112
Recent studies of nuclear forces based on lattice QCD are presented. Not only the central potential but also the tensor potential is deduced from the Nambu?CBethe?CSalpeter wave function measured with lattice QCD. This method is applied to various kinds of nuclear potentials, such as ${V_{NN}, V_{\Lambda N}, V_{p{\Xi}^0},V_{\Lambda\Lambda-N\Xi-\Sigma\Sigma}}$ (coupled-channel potential), and ${V^{\{{\bf {27},{8}_s,{1},{10},\overline{10},{8}_a}\}}}$ (flavor representation potential). The energy dependence and the angular momentum dependence of the quenched V NN is studied. A challenge for three-nucleon force from lattice QCD is also presented.  相似文献   

17.
In this article, we assume that there exist scalar D*[`(D)]*{D}^{\ast}{\bar {D}}^{\ast}, Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*{B}^{\ast}{\bar {B}}^{\ast} and Bs*[`(B)]s*{B}_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250–500) MeV above the corresponding D *–[`(D)]*{\bar{D}}^{\ast}, D s *–[`(D)]s*{\bar {D}}_{s}^{\ast}, B *–[`(B)]*{\bar{B}}^{\ast} and B s *–[`(B)]s*{\bar {B}}_{s}^{\ast} thresholds, the Y(4140) is unlikely a scalar Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast} molecular state. The scalar D*[`(D)]*D^{\ast}{\bar{D}}^{\ast}, Ds*[`(D)]s*D_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*B^{\ast}{\bar{B}}^{\ast} and Bs*[`(B)]s*B_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states maybe not exist, while the scalar D*[`(D)]¢*{D'}^{\ast}{\bar{D}}^{\prime\ast}, Ds¢*[`(D)]s¢*{D}_{s}^{\prime\ast}{\bar{D}}_{s}^{\prime\ast}, B¢*[`(B)]¢*{B}^{\prime\ast}{\bar{B}}^{\prime\ast} and Bs¢*[`(B)]s¢*{B}_{s}^{\prime\ast}{\bar{B}}_{s}^{\prime\ast} molecular states maybe exist.  相似文献   

18.
19.
For systems of N charged fermions (e.g. electrons) interacting with longitudinal optical quantized lattice vibrations of a polar crystal we derive upper and lower bounds on the minimal energy within the model of H. Fröhlich. The only parameters of this model, after removing the ultraviolet cutoff, are the constants U > 0 and α > 0 measuring the electron-electron and the electron-phonon coupling strengths. They are constrained by the condition ${\sqrt{2}\alpha < U}For systems of N charged fermions (e.g. electrons) interacting with longitudinal optical quantized lattice vibrations of a polar crystal we derive upper and lower bounds on the minimal energy within the model of H. Fr?hlich. The only parameters of this model, after removing the ultraviolet cutoff, are the constants U > 0 and α > 0 measuring the electron-electron and the electron-phonon coupling strengths. They are constrained by the condition ?2a < U{\sqrt{2}\alpha < U}, which follows from the dependence of U and α on electrical properties of the crystal. We show that the large N asymptotic behavior of the minimal energy E N changes at ?2a = U{\sqrt{2}\alpha=U} and that ?2a £ U{\sqrt{2}\alpha\leq U} is necessary for thermodynamic stability: for ${\sqrt{2}\alpha > U}${\sqrt{2}\alpha > U} the phonon-mediated electron-electron attraction overcomes the Coulomb repulsion and E N behaves like −N 7/3.  相似文献   

20.
This paper deals with the higher spin Dirac operator Q2,1 acting on functions taking values in an irreducible representation space for so(m) with highest weight $ (\tfrac{5} {2},\tfrac{3} {2},\tfrac{1} {2},...,\tfrac{1} {2}) $ (\tfrac{5} {2},\tfrac{3} {2},\tfrac{1} {2},...,\tfrac{1} {2}) . This operator acts as a toy model for generalizations of the classical Rarita—Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号