首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline (NC) copper was fabricated by severe plastic deformation of coarse-grained copper at a high strain rate under explosive loading. The feasibility of grain refinement under different explosive loading and the influence of overall temperature rise on grain refinement under impact compression were studied in this paper. The calculation model for the macroscopic temperature rise was established according to the adiabatic shock compression theory. The calculation model for coarse-grained copper was established by the Voronoi method and the microscopic temperature rise resulted from severe plastic deformation of grains was calculated by ANSYS/ls-dyna finite element software. The results show that it is feasible to fabricate NC copper by explosively dynamic deformation of coarse-grained copper and the average grain size of the NC copper can be controlled between 200~400 nm. The whole temperature rise would increase with the increasing explosive thickness. Ammonium nitrate fuel oil explosive was adopted and five different thicknesses of the explosive, which are 20 mm, 25 mm, 30 mm, 35 mm, 45 mm, respectively, with the same diameter using 20 mm to the fly plate were adopted. The maximum macro and micro temperature rise is up to 532.4 K, 143.4 K, respectively, which has no great effect on grain refinement due to the whole temperature rise that is lower than grain growth temperature according to the high pressure melting theory.  相似文献   

2.
In this paper, the effects of carbon nanotubes (CNT) implantation and sisal fibre size on the electrical properties of sisal fibre-reinforced epoxy composites are reported. For this purpose, the epoxy composites reinforced with CNT-implanted sisal fibre of 5 mm and 10 mm lengths were prepared by hand moulding and samples characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σac) at different temperatures and frequencies. It was observed that the dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 KHz. Interestingly, the sample having CNT-implanted sisal fibre of 5 mm length exhibited the highest value of dielectric constant than the one with length 10 mm. This is attributed to the increased surface area of sisal fibre and enhancement of the interfacial polarization. At a constant volume and a length of 5 mm of the fibres, the number of interfaces per unit volume element is high and results in a higher interfacial polarization. The interfaces decrease as the fibre length increases, and therefore, the value of ε′ decreases at 10 mm fibre length. The peak value of the dielectric constant decreases with increasing frequency. A continuous decrease in dissipation factor (tan δ) with increasing frequency for all samples was observed, while at lower temperatures, the values of tan δ remains approximately same. The AC conductivity for 5 mm length sisal epoxy composite and 10 mm length sisal fibre–epoxy composites is higher than that of pure epoxy at all the frequencies.  相似文献   

3.
In order to study the influence of grain size and lattice strain on the thermal conductivity of nanocrystalline (NC) materials, both experimental and theoretical studies were carried out on NC copper. The NC copper samples were prepared by hot isostatic pressing of nano-sized powder particles with mean grain size of 30 nm. The thermal behaviors of the samples were measured to be 175.63–233.37 W (m K)?1 by using a laser method at 300 K, which is 45.6 and 60.6 % of the coarse-grained copper, respectively. The average grain size lies in the range of 56–187 nm, and the lattice strain is in the range of ?0.21 to ?0.45 % (in the direction of 111) and ?0.09 to 0.92 % (in the direction of 200). In addition, a modified Kapitza resistance model was developed to study the thermal transport in NC copper. The theoretical calculations based on the presented theoretical model were in good agreement with our experimental results, and it demonstrated that the thermal conductivity of NC materials show obvious size effect. It is also evident that the decrease in the thermal conductivity of NC material can be mainly attributed to the nano-size effect rather than the lattice strain effect.  相似文献   

4.
An attempt is made to synthesize high temperature iron phosphide phase over copper substrate at room temperature via simple and cost-effective electrodeposition technique using aqueous acidic electrolyte. The phosphorus content in alloys varied with its source's composition in the electrolyte. All as-obtained deposits are annealed at 400 °C for 3 h under constant inert gas flow rate in a tubular furnace. X-ray diffraction and scanning electron microscope are used to characterize phase composition and morphology, respectively. All samples are electrochemically tested as anode material against lithium between 0.01 and 2.5 V at constant 10 μAcm?2, rendering it as possible negative electrode for high energy density lithium-ion battery applications.  相似文献   

5.
G. Sainath  P. Rohith 《哲学杂志》2013,93(29):2632-2657
Abstract

Molecular dynamics simulations have been performed to understand the size-dependent tensile deformation behaviour of 〈1 0 0〉 Cu nanowires at 10 K. The influence of nanowire size has been examined by varying square cross-section width (d) from 0.723 to 43.38 nm using constant length of 21.69 nm. The results indicated that the yielding in all the nanowires occurs through nucleation of partial dislocations. Following yielding, the plastic deformation in small size nanowires occurs mainly by slip of partial dislocations at all strains, while in large size nanowires, slip of extended dislocations has been observed at high strains in addition to slip of partial dislocations. Further, the variations in dislocation density indicated that the nanowires with d > 3.615 nm exhibit dislocation exhaustion at small strains followed by dislocation starvation at high strains. On the other hand, small size nanowires with d < 3.615 nm displayed mainly dislocation starvation at all strains. The average length of dislocations has been found to be same and nearly constant in all the nanowires. Both the Young’s modulus and yield strength exhibited a rapid decrease at small size nanowires followed by gradual decrease to saturation at larger size. The observed linear increase in ductility with size has been correlated with the pre- and post-necking deformation. Finally, dislocation–dislocation interactions leading to the formation of various dislocation locks, the dislocation–stacking fault interactions resulting in the annihilation of stacking faults and the size dependence of dislocation–surface interactions have been discussed.  相似文献   

6.
E. Kardoulaki  J. Lin  D. Farrugia 《哲学杂志》2016,96(21):2176-2203
The effect of stress state on the initiation of damage for leaded free cutting steel has been investigated under hot rolling conditions. Double notched (DN) circumferential tension samples were designed and used to simulate damage development at different stress states and deformation conditions using a Gleeble (3800) thermal-mechanical testing system. Two DN sample geometries with varying notch profiles were used to account for different states of stress. To simulate the conditions of hot rolling the samples were tested at high temperatures (900–1200 °C) and moderate strain rates (0.1–1 s?1). After testing to failure, which normally occurs at one notch of the specimen, the unfailed notch of each sample was sectioned to examine the sites where damage occurs since the material has been captured in a state very close to failure. Two of the cases examined have shown definitive damage paths occurring from ‘outside–in’ for a sharp notch deformed at T = 900 °C and from ‘inside–out’ for a blunt notch tested at T = 1200 °C for the same strain rate of 0.1 s?1. The experimental results of the failure initiation sites were compared with computed values of the stress fields around the notch profiles, obtained from FE analysis using a set of viscoplastic constitutive equations calibrated for free cutting steel. The temperature profiles from high temperature mechanical testing were used in the FE calculations of the stress state.  相似文献   

7.
Nanocrystalline yttrium aluminum garnet (Y3Al5O12) is synthesized by combustion technique. The X-ray diffraction (XRD) pattern of 900 °C annealed sample revealed a cubic structure. The average crystallite size is found to be 20.5 nm. γ-irradiated Y3Al5O12 exhibits two thermoluminescence (TL) glows: a prominent one with a peak at ~410 K and another one with a peak at ~575 K. It is found that the TL glow peak intensity at 410 K increases, while its glow peak temperature is almost steady with an increase in the γ-dose. The effect of the heating rate on the TL glow curve is studied. It is found that Tm1 shifts towards higher temperature region while the Im1 decreases with an increase in the heating rate. The TL glow curves are analyzed by Chen's peak shape method and the TL parameters are estimated.  相似文献   

8.
We report the formation of large islands of bi-modal lateral size distributions having one peak at lateral size ~100 nm (height ~70 nm) and another at ~160 nm (height ~110 nm) by soft-landing of size-selected copper nanoclusters (3 nm in diameter) at room temperature (26 °C). Si(100) wafer containing native oxide is used as substrate. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) are employed to study the morphological aspects and for optical aspect cathodoluminescence measurement is used. Rapid thermal annealing (RTA) (200 °C, dry N2, 120 s) induced effects on the morphology shows that individual islands are morphologically stable. A careful qualitative study of the optical property using cathodoluminescence in a SEM before and after the thermal treatment, using RTA, reveals very low diffusion of the cluster material into the substrate.  相似文献   

9.
The physical and mechanical properties of a C60 fullerene sample have been investigated under high pressure–high temperature conditions using a designer Diamond Anvil Cell. Electrical resistance measurements show evidence of C60 cage collapse at 20 GPa, which leads to the formation of an insulating phase at higher pressure. Energy dispersive X-ray diffraction (EDXD) data indicated that the characteristic fcc reflections gradually decrease in intensity and eventually disappear above 28 GPa. A C60 sample was laser-heated at a pressure of 35 GPa to a temperature of 1910±100 K and, subsequently, decompressed to ambient conditions. The photoluminescence spectra and the Raman spectrum of the pressure–temperature-treated sample were measured at a low temperature of 80 K. Raman peak at 1322.3 cm?1 with full-width half-maximum of 2.9 cm?1 was observed from the sample, which is attributed to the hexagonal diamond phase in the sample. The room temperature photoluminescence spectra showed a symmetric emission band centered in the red spectral range with a peak at 690 nm. The structural analysis of the pressure–temperature-processed C60 sample using EDXD method showed strong internal structure orientation and a phase close to hexagonal diamond. Mechanical properties such as hardness and Young’s modulus were measured by nanoindentation technique and the values were found to be 90±7 and 1215±50 GPa, respectively and these values are characteristic of sp3-bonded carbon materials.  相似文献   

10.
The lifetime of the ruby R1 fluorescence line was measured as a function of pressure (up to about 20 GPa) and temperature (550 K) in an externally heated diamond anvil cell (DAC). At constant temperatures, the lifetime is increasing linearly with increasing pressure. The slope of the pressure dependence is constant up to a temperature of 450 K and it is decreasing at higher temperatures. At constant pressure, the lifetime is exponentially decreasing with increasing temperature. The (p, T)-dependence can be parametrized by the combination of a linear and an exponential function. This allows an accurate p, T-determination by the combination of fluorescence spectroscopy using Sm2+-doped strontium tetraborate and lifetime measurements of ruby, as the energy of the Sm2+ fluorescence is nearly temperature-independent.  相似文献   

11.
The effect of nanometric grain size modulation on the behavior of different kinds of chemically synthesized multiferroic ferrite–ferroelectric nanocomposites with cobalt zinc ferrite (Co0.65Zn0.35Fe2O4) as a ferrimagnetic component and lead zirconate titanate (PbZr0.52Ti0.48O3) as a ferroelectric component have been investigated in detail. Formation of two distinct pure phases of as-prepared nanocomposites was confirmed from recorded X-ray diffraction patterns at room temperature. The backscattered mode of a field emission scanning electron microscope micrograph has been used to study the microstructure, average grain size, and distribution of the two individual phases in the composites. Magnetization vs. magnetic field measurements clearly show the room temperature good hysteretic ferrimagnetic behavior of the composites having coercivity of 83–124 Oe and spontaneous magnetization of 20–24 emu/g. The dielectric constant is found to increase with increasing grain size of the nanocomposites from 124 to 687 at a frequency of 1 kHz. Investigation of temperature-dependent dielectric constant behavior reveals that the paraelectric–ferroelectric transition temperature decreases from 364 to 351 °C with decreasing particle size. A complex impedance spectroscopy study was carried out in the frequency range of 50 Hz–1 MHz and in the temperature range of 27–400 °C. The contribution of both grains and grain boundaries in the electrical properties of the composites has been confirmed from the complex impedance spectroscopy data. The activation energies estimated from the complex impedance spectroscopy and the ac conductivity spectrum are found to be nearly the same for the nanocomposites. The polarization vs. electric field measurement exhibits a typical ferroelectric hysteresis loop at room temperature and provides conclusive evidence of the presence of spontaneous polarization in the composites, confirming the presence of excellent ferroelectricity in the nanocomposites. At room temperature the multiferroic behavior of the composites is also confirmed from detailed magnetoelectric (ME) response studies. The optimal ME response is observed to be 0.6 % for higher temperature sintered composites.  相似文献   

12.
To gain fundamental insight into the relationship between length scales and mechanical behaviour, Ni-Fe multilayered materials with a 5-μm-layer thickness and a modulated grain size distribution have been synthesized by pulsed electrodeposition. Microstructural studies by SEM and TEM reveal the alternating growth of well-defined layers with either nano (d = 16 nm) or coarse grains (d ≥ 500 nm). Room temperature tensile tests have been performed to investigate the mechanical response and understand the underlying deformation mechanisms. Tensile test results and fractographic studies demonstrate that the overall room temperature mechanical behaviour of the multilayered material, i.e. strength and ductility, is governed primarily by the layers containing nanocrystalline grains. The measured properties have been discussed in the context of modulated grain structure of the multilayered sample and contribution of each grain size regime to the overall strength and ductility.  相似文献   

13.
Studies of breakdown threshold intensity for air at various pressures in the range of 24–760 torr using 0.355, 0.532 and 1.06 μm radiation are reported. We observep −0.8 scaling ofI th at 1.06 μm and a weak scaling ofp −0.4 at 0.532 and 0.355 μm radiation. Strong dependence of breakdown spot size on laser power but weak dependence on air pressure is observed.  相似文献   

14.
S. Karmakar 《高压研究》2013,33(2):381-391
We describe a technique for making electrical transport measurements in a diamond anvil cell at liquid helium temperature having in situ pressure measurement option, permitting accurate pressure determination at any low temperature during the resistance measurement scan. In general, for four-probe resistivity measurements on a polycrystalline sample, four fine gold wires are kept in contact with the sample with the help of the compression from the soft solid (usually alkali halides such as NaCl, KCl, etc.) acting as a pressure-transmitting medium. The actual pressure on the sample is underestimated if not measured from a ruby sphere placed adjacent to the sample and at that very low temperature. Here, we demonstrate the technique with a quasi-four-probe resistance measurement on an Fe-based superconductor in the temperature range 1.2–300 K and pressures up to 8 GPa to find an improved pressure dependence of the superconducting transition temperature.  相似文献   

15.
Structure and magnetic state of aerosol FeCu nanoparticles of 10–30 nm size with Cu content of 0.6–92.1 at.% have been examined by X-ray diffraction and Mössbauer spectroscopy. The FeCu particles have been shown to consist of an iron core surrounded by a copper and Fe oxide shell. With increasing Cu content the iron core having a bcc structure is reduced down to its complete disappearance followed by vanishing ferromagnetism of the particles. Within the copper content from 4.9 to 74.3 at.% the bcc and fcc phases coexist, with the fcc phase having a lattice constant close to that of pure copper and the bcc lattice constant being slightly higher than that for pure Fe due to embedding Cu atoms into the Fe lattice. At Fe-rich FeCu samples a presence of two-spin (ferromagnetic and paramagnetic) components of the fcc Fe is also observed. In the case of a thin copper shell there is only the ferromagnetic fcc Fe, whereas with further thickening of the shell both spin states of the fcc Fe appear existing up to a 20% Cu content. For FeCu samples with a higher Cu content they disappear due to oxidation of the copper grains. The Cu-rich samples with Cu content higher 80 at.% have a fcc structure, with the lattice constant being slightly higher than that of copper and they are paramagnetic. A slight increase of the lattice constant is due to the penetration of small iron aggregations into the Cu grains. In contact with air, the FeCu particles become covered with Fe3O4 and Cu2O. Their long-term exposure to ambient conditions leads to further oxidation process of Cu2O to CuO.  相似文献   

16.
A detailed structural, magnetic and physics properties of La1?xMnOδ (LMO) nanomanganites were investigated to find out the role of cationic vacancies (La vacancy with Mn3+/Mn4+) in grain size modulation. Crystal structure and phase analysis of all samples were carried out by Rietveld refinement of high-resolution XRD and neutron diffraction data. We report here, the oxygen content in studied LMO compound decreases with increase in La vacancies in parent site and a parasitic Mn3O4 phase has been evolved in the range of 0.9 ≥ La/Mn ≥ 0.7. Para to ferro magnetic transition temperature (TC) of all nanometric samples (La/Mn < 0.9) was found at high temperature side (≥260 K) whereas, the same for bulk one (La/Mn ≥ 0.9) was around 160 K. The enhancement of TC (~70 K) with size reduction is attributed to broadening of bandwidth due to compaction of MnO6 octahedra in system unit cell. In bulk sample, a secondary cluster/spin glassy phase is found below 50 K, whereas the glassy phase has been suppressed in nanoscale. Field-dependent magneto-resistance measurements are also carried out for all samples at different temperatures to get a profound insight of magneto-transport dynamics of the present system.  相似文献   

17.
Formation of chunks of various sizes ranging between 2 and 6 mm was achieved using high-energy ball milling in Al–1at.%Pb–1at.%W alloy system at room temperature during milling itself, aiding in in situ consolidation. X-ray diffraction and transmission electron microscopy (TEM) studies indicate the formation of multi-phase structure with nanocrystalline structural features. From TEM data, an average grain size of 23 nm was obtained for Al matrix and the second-phase particles were around 5 nm. A high strain rate sensitivity (SRS) of 0.071 ± 0.004 and an activation volume of 4.71b3 were measured using nanoindentation. Modulus mapping studies were carried out using Berkovich tip in dynamic mechanical analysis mode coupled with in situ scanning probe microscopy imaging. The salient feature of this investigation is highlighting the role of different phases, their crystal structures and the resultant interfaces on the overall SRS and activation volume of a multi-phase nc material.  相似文献   

18.
Dielectric constant measurements can be performed at temperatures greater than room temperature; some techniques are shown in this work. The dielectric constant of phosphate glasses, measured in the X‐band microwave range, was determined using a microwave setup assembled to measure the shift in the standing wave pattern produced by the insertion of the sample inside the waveguide. The glass system 50P2O5 · 25Li2O · 25Na2O was chosen in this work due to its lower melting point and lower transition temperature (Tg) values. The dielectric constant of the glass studied in this work increases in the temperature range 25–330°C, as shown by the results at radio and microwave frequencies. The method of standing wave shift was applied, and it is shown to be a useful tool to estimate the Tg of glasses. This assumption was confirmed by differential thermal analysis technique. Measurements were compared to that at 10 MHz by impedancimetric methods.  相似文献   

19.
The binding of aucubin to bovine serum albumin in the absence or presence of copper II or iron III has been studied by fluorescence, UV-Vis absorbance, synchronous fluorescence, and circular dichroism spectroscopies at pH 7.40. The results of fluorescence showed that the static quenching mechanism played a major role without or with copper II or iron III, and the quenching constant, binding constant, and binding site number decreased with copper II or iron III at three different temperatures (310 K, 300 K, and 290 K). This indicated that the drug would take effect more promptly in the presence of metal ions than in the absence of them. Thermodynamic parameters revealed that hydrophobic forces played vital roles and the binding process was spontaneous without or with copper II or iron III. The results of synchronous fluorescence showed that the polarity of the microenvironment around tryptophan and tyrosine residues changed insignificantly without or with copper II or iron III. The results of circular dichroism showed that there were slight reductions in the α-helix content of bovine serum albumin. In conclusion, copper II or iron III could reduce the binding ability between aucubin and bovine serum albumin, resulting in enhanced maximum effects of aucubin. The relative knowledge would contribute to the pharmaceutical development and clinical application of aucubin.

Supplemental materials are available for this article. Go to the publisher's online edition of Spectroscopy Letters to view the supplemental file.  相似文献   


20.
Measurements of the hysteresis loop and pyroelectric current density have been carried out. It has been shown that the function describing the remanent polarization decay over time generated by a prolonged transverse electric field is for TGS qualitatively the same as for other uniaxial ferroelectrics (TGSe, Rochelle salt), regardless of the fact that different electrode–sample systems were used. A prolonged application of an electric potential Vs at temperature T = TA < TC (TC is the critical temperature of the paraelectric–ferroelectric phase transition) to a side ring electrode of a round plate sample changes pyroelectric properties of TGS and leads to the memory effect. For T < TA, the polarization P values obtained by time integration of electric current density measured after Vs disconnection differ from those measured before Vs application by a constant value, and therefore, the first derivative ?P/?T remains unchanged provided that the temperature TA is not exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号