首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First principles calculations have been performed to study the electronic and magnetic structures of double perovskites Ca2MWO6 (M=Co, Ni) using full potential linearized augmented plane wave method. The density of states and spin magnetic moments are calculated and we have examined the valence states of Co, Ni and W ions. The results predict the half-metallic ground state of Ca2CoWO6 and the insulating nature of Ca2NiWO6.  相似文献   

2.
We have investigated the structural stabilities of iron arsenide compounds Ax(FeAs)1−x (A = alkali and alkaline-earth metals) by first principles calculations. We find that (i) all of the experimental “122” type structures with composition x=1/3 are stable; (ii) all of the “111” type structures with composition x=1/2 except CsFeAs are stable; (iii) K3FeAs with composition x=3/4 is stable. The predicted stable KFeAs, RbFeAs, SrFeAs, BaFeAs, K3FeAs have the As-Fe-As bond angles close to the ideal tetrahedral angles, indicating that they may be superconductors.  相似文献   

3.
The electronic structure of Sr2CuMn2As2O2 and Sr2CuFe2As2O2 are studied by the first-principle calculations. These compounds have a body-centered-tetragonal crystal structure that consists of the CuO2 layers similar to those in the high-Tc cuprate superconductor, and intermetallic MAs (M = Mn, or Fe) layers similar to the FeAs layers in high-Tc pnictides. Such special structure makes them as interesting candidates for new type of superconductor since they have two types of superconducting layers. However, our calculations indicate that the states in the range from −2.0 eV to +2.0 eV are dominated by Mn-3d or Fe-3d states, while the states of Cu-3d are far away from the Fermi level (in the range from −3.0 eV to −1.0 eV). Such results are significantly different with the Cu-based superconductor, like La2CuO4, where the states around Fermi level are dominated by Cu-3d states. Besides, we find that the mean-field magnetic ground state is the checkerboard antiferromagnetic in Cu sublattice and the stripe antiferromagnetic in Fe (or Mn) sublattice.  相似文献   

4.
D.M. Hoat 《Physics letters. A》2019,383(14):1648-1654
In the last years, alkaline-earth based antiperovskite compounds with small semiconductor band gap have been proven to be promising candidate for optoelectronic and thermoelectric applications. In this work, the structural, electronic, optical and thermoelectric properties of Ae3PbS (Ae = Ca, Sr and Ba) compounds have been predicted using first principles calculations based on the full-potential linearized augmented plane-wave (FP-LAPW) method and semiclassical Boltzmann transport theory. Exchange-correlation effect is treated with the generalized gradient approximation with Perdew–Burke–Ernzerhof scheme (GGA-PBE) and Tran–Blaha modified Becke–Johnson exchange potential. The lattice constant of considered materials increases as Ae goes in order from Ca to Ba and the hardness slightly decreases in this order. Ca3PbS and Sr3PbS are semiconductor with direct band gap of 0.199 eV and 0.116 eV, respectively, while Ba3PbS is nearly metallic. Important optical responses of studied antiperovskites are found in the visible and ultraviolet energy range. Finally, the thermoelectric properties including Seebeck coefficient, electrical conductivity, thermal conductivity, power factor and figure of merit are calculated. Obtained results show that Ca3PbS and Sr3PbS could be candidate for applications in thermoelectric generators at low and moderate temperatures due to their high figure of merit values.  相似文献   

5.
The structural, electronic, elastic and thermal properties of the cubic AB type (A=Tc, B=Ti, V, Nb and Ta) technetium intermetallic compounds have been studied using the full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) and local density approximation (LDA) used for the exchange-correlation potential. The calculated lattice parameters agree well with the experimental results. The calculated electronic properties reveal that these compounds are metallic in nature with partial ionic bonding. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh's rule and Cauchy's pressure revealing ductile in nature of all the compounds. Bonding nature is discussed using Fermi surface, band structure and charge density difference plots.  相似文献   

6.
We have studied the electronic and magnetic structures of the ternary iron arsenides AFe2As2 (A = Ba, Ca, or Sr) using the first-principles density functional theory. The ground states of these compounds are in a collinear antiferromagnetic order, resulting from the interplay between the nearest and the next-nearest neighbor superexchange antiferromagnetic interactions bridged by As 4p orbitals. The correction from the spin–orbit interaction to the electronic band structure is given. The pressure can reduce dramatically the magnetic moment and diminish the collinear antiferromagnetic order. Based on the calculations, we propose that the low energy dynamics of these materials can be described effectively by a t−JH−J1−J2-type model [arXiv: 0806.3526v2, 2008].  相似文献   

7.
Using a state-of-the-art full-potential electronic structure method within the generalized gradient approximation (GGA), we study the electronic structure and magnetic properties of the Mn2CuSi full-Heusler alloy. Calculations show that CuHg2Ti-type structure alloy is a half-metallic ferrimagnet with the Fermi level (εF) being located within a tiny gap of the minority-spin density of states. The conduction electron at εF keeps a 100% spin polarization. A total spin moment, which is mainly due to the antiparallel configurations of the Mn partial moments, is −1.00μB for a wide range of equilibrium lattice parameters. Simultaneously, the small spin magnetic moments of Cu and Si atoms are antiparallel. The gap mainly originates from the hybridization of the d states of the two Mn atoms. Thus, Mn2CuSi may be the compound of choice for further experimental investigations.  相似文献   

8.
《Current Applied Physics》2018,18(9):1001-1005
The effect of indium doping on structural and magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) prepared by the solid state reaction method was investigated. The Rietveld refinement method was used to analyze the X-ray diffraction patterns. The magnetic transition temperatures associated with the proper-screw spin phase to the collinear ferrimagnetic spin phase transition can be efficiently modulated by varying indium content. The magnetic transition temperature increases to a maximum with indium content x = 0.04 and then decreases with x, suggesting the possibility that electrically controlled magnetization reversal can be can be effectively tailored by varying indium content. The saturation magnetization at room temperature was decreased as increasing indium content, which can be explained as the metal ions occupation. It is worthy to note that the coercivity of In-doped samples was decreased drastically compared that of undoped sample, which is probably resulted from the reduction in anisotropy field with substitution of In3+ for Fe3+. The In-doped hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 may be potential candidates for application in magnetoelectric devices.  相似文献   

9.
Trivalent bismuth luminescence is reported in three Sillen bismuth oxyhalide phases, SrBiO2Cl, BaBiO2Cl, and BaBiO2Br. These compounds exhibit Bi 6s6p→6s2 emission under UV and X-ray radiations. At room temperature, BaBiO2Cl shows the most intense light emission, with spectral and decay properties similar to those found in Bi4Ge3O12 (BGO). At low temperatures, each phase show an increase in the photoluminescence intensities and a narrowing of the emission peaks. In contrast to the temperature dependence of BGO, X-ray excited luminescence intensities of all three phases remain relatively constant throughout the temperature range 10-295 K, though much lower than BGO at low temperatures. This result indicates that the Sillen phases undergo less thermal quenching than BGO. The low temperature and room temperature radio-luminescence decay times were determined from pulsed X-ray measurements. At room temperature, SrBiO2Cl exhibits faster decays than BGO, while BaBiO2Cl and BaBiO2Br have decay times similar to BGO.  相似文献   

10.
ABSTRACT

Direct bandgap semiconductors are very essential to fulfil the demand for the advancement in optoelectronic devices. Therefore it is important to predict new potential candidates having such unique features. In current work, Sr3X2 (X=N, P, As, Sb and Bi) compounds have been reported for the first time by well trusted FP-APW+lo method. For the better prediction of the energy band gap, mBJ is used alongwith routine generalised gradient approximation (GGA). The results show small and direct energy band gaps at Γ-Γ symmetry points with magnitude in the range from 0.62?eV (Sr3P2) to zero energy band gap (Sr3Bi2). In partial density of state Sr-d state and X-p state are contributed in the band structure. The compounds show mostly covalent bonding nature. The frequecy dependent optical properties in the linear optical range are also investigated.  相似文献   

11.
Mossbauer spectra of57Fe have been measured for Bi2Sr2Can-1(Cu, Fe)nOy (n=1,2,3) oxide superconductors. Each spectrum was decomposed to a single set or two sets of double peaks. The assignment of these peaks to the specific sites for the iron atoms are discussed. The 4 fold planar sites of Cu2O plane are preferentially substituted by Fe atoms.  相似文献   

12.
We have investigated the structural properties of 3d transition metal antimonide compounds ATM2Sb2 by first-principles calculations. We find that the calcium-based CaNi2Sb2, the strontium-based SrNi2Sb2, SrCu2Sb2, and the barium-based BaCu2Sb2 are stable in the CaBe2Ge2-type structure. All the other compounds are stable in the ThCr2Si2-type structure. SrCo2Sb2 in the ThCr2Si2-type structure has specifically ferromagnetic preference. The stable compounds in the CaBe2Ge2-type structure have strong interlayer interactions. Although the stable stacking structures are different, all the Fe-based compounds have the stripe-like antiferromagnetic ground states. The Co-based compounds have the ferromagnetic ground states. The Ni-based and Cu-based compounds have the nonmagnetic ground states.  相似文献   

13.
We studied the structural, electronic and magnetic properties of small Fen clusters (n=2-7) endohedrally doped in icosahedral C60 and C80 fullerenes using first principles calculations based on the density functional theory. It is found that the encapsulated Fen clusters inside icosahedral C80 are energetically favorable while Fen@C60 metallofullerene nano-cages are not. The binding energies of the Fen encapsulated in C60 are positive and increase with the number of iron atoms (n) while those of the Fen@C80 are negative and their absolute values increase up to n=6. The encapsulation does not significantly change the enclosed cluster structure, but the total magnetic moment of the larger clusters reduces due to a stronger Fe-C hybridization.  相似文献   

14.
We report first principles density functional theory (DFT) results of H2S and HS adsorption and dissociation on the Fe(1 1 0) surface. We investigate the site preference of H2S, HS, and S on Fe(1 1 0). H2S is found to weakly adsorb on either the short bridge (SB) or long bridge (LB) site of Fe(1 1 0), with a binding energy of no more than 0.50 eV. The diffusion barrier from the LB site to the SB site is found to be small (∼0.10 eV). By contrast to H2S, HS is predicted to be strongly chemisorbed on Fe(1 1 0), with the S atom in the LB site and the HS bond oriented perpendicular to the surface. Isolated S atoms also are predicted to bind strongly to the LB sites of Fe(1 1 0), where the SB is found to be a transition state for S surface hopping between neighboring LB sites. The minimum energy paths for H2S and HS dehydrogenation involve rotating an H atom towards a nearby surface Fe atom, with the S-H bonds breaking on the top of one Fe atom. The barrier to break the first S-H bond in H2S is low at 0.10 eV, and breaking the second S-H bond is barrierless, suggesting deposition of S on Fe(1 1 0) via H2S is kinetically and thermodynamically facile.  相似文献   

15.
The electronic density of states (DOS) and magnetic moments of rare-earth antimonides (RCrSb3) have been studied by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the LSDA+U method is used. The effective moments of LaCrSb3, CeCrSb3, NdCrSb3, GdCrSb3, and DyCrSb3 were found to be , , , and respectively. The exchange-splittings of Cr-3d state electrons and 4f-states of rare earth elements were analyzed to explain the magnetic nature of these systems. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p state orbitals. The results obtained are compared and found to be in close agreement with the available data.  相似文献   

16.
罗强  唐斌  张智  冉曾令 《物理学报》2013,62(7):77101-077101
基于密度泛函理论第一性原理, 在广义梯度近似下, 研究了表面覆盖度为0.25 ML (monolayer)时硫化氢分子在Fe(100)面吸附的结构和电子性质, 并与单个硫原子吸附结果进行了对比. 结果表明: 硫化氢分子吸附在B2位吸附能最小为-1.23 eV, 最稳定, B1位吸附能最大为-0.01 eV, 最不稳定; 并对硫化氢分子在B1位和B2位吸附后的电子态密度进行了分析, 也表明了吸附在B2位稳定, 且吸附在B2位后硫化氢分子几何结构变化不大; 将硫化氢中硫原子吸附与单个硫原子吸附的电子性质进行了比较, 发现前者吸附作用非常微弱; 同时对吸附后的Fe(100)面进行了对比, 单个硫原子吸附的Fe(100)面电子态密度出现了一系列峰值且离散分布, 生成了硫化亚铁, 表明在硫化氢环境下, 主要是硫化氢析出的硫原子发生了吸附. 关键词: 第一性原理 Fe(100)表面 吸附能 硫化氢  相似文献   

17.
路战胜  赫丙玲  马东伟  杨宗献 《中国物理 B》2015,24(2):26801-026801
To investigate the effects of chlorine on the Au/ceria catalysts,the adsorption of gold or chlorine and their coadsorpiton on the stoichiometric and partially reduced CeO2(111) surfaces are studied from the first principles.It is found that the adsorption of Au is significantly enhanced by the chlorine preadsorption on the stoichiometric CeO2(111) surface;while on the partially reduced CeO2(111) surface,the preadsorbed chlorine inhabits the oxygen vacancy(which is the preferred adsorption site for gold),leading to a CeOCl phase and the dramatical weakening of the Au adsorption.Therefore,chlorine on the CeO2(111) surface can affect the Au adsorption thus the activity of the Au/CeO2 catalyst.  相似文献   

18.
The adsorption of atomic S on the Fe(1 1 0) surface is examined using density functional theory (DFT). Three different adsorption sites are considered, including the atop, hollow and bridge sites and the S is adsorbed at a quarter monolayer coverage in a p(2 × 2) arrangement. The hollow site is found to be the most stable, followed by the bridge and atop sites. At all three sites, S adsorption results in relatively minor surface reconstruction, with the most significant being that for the hollow site, with lateral displacements of 0.09 Å. Comparisons between S-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the S. At the hollow site, the presence of S causes an increase in the surface Fe d-orbital density of states between 4 and 5 eV. However, S adsorption has no significant effect on the structure and magnetic properties of the lower substrate layers.  相似文献   

19.
The ab initio APW+lo method is used to study the cation effect on the electronic structure of CeBO3 (B=Ga, In) compounds. High-pressure structural behavior, magnetic phase stabilities and electronic properties of both materials have been investigated. The observed most stable phases are the orthorhombic (Pnma) and hexagonal (P63cm) for CeGaO3 and CeInO3, respectively. It is shown that the ferromagnetic (FM) state in CeGaO3 is energetically more favorable than the anti-ferromagnetic (AFM) one, unlike CeInO3 where the AFM-III configuration is the lowest in energy. LSDA+U calculation shows that the valence band maximum is located at T point and the conduction band minimum is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.6 eV in the ferromagnetic ordering CeGaO3 which is typical of semiconductor with large gap. CeInO3 compound keeps the metallic character using DFT+U calculation.  相似文献   

20.
The electronic structures of ABi2Ta2O9 (A=Ca, Sr, and Ba) were calculated by using first-principles under optimized structure. As the size of A-site cation decreases from that of Ba2+ to Ca2+, the band-gap between O 2p and Ta 5d increases from 2.0 to 2.9 eV, which responses to the stronger orbital hybridizations between Ta 5d and O 2p orbits favoring improvement of the ferroelectric property, decrease in leakage current, and increase in both spontaneous polarization and Curie temperature by the structural distortion. In contrast to CaBi2Ta2O9 and SrBi2Ta2O9, the hybridization between Ba 5p orbits and O 2p orbits in BaBi2Ta2O9 has better structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号