首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yingping Mou 《哲学杂志》2013,93(35):3361-3380
Abstract

In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.  相似文献   

2.
曹天德 《中国物理 B》2010,19(11):117402-117402
This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface,and these pairs are incoherent and result in the pseudogap state.With the change of doping or temperature,some pairs are formed in the nodal region which locates the Fermi surface,and these pairs are coherent and lead to superconductivity.Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface.It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure,and non-s wave symmetry gap favours the high-temperature superconductivity.Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.  相似文献   

3.
We discuss the physics of the high temperature superconductivity in hole doped copperoxide ceramics in the pseudogap region. Starting from an effective reduced Hamiltonianrelevant to the dynamics of holes injected into the copper oxide layers proposed in aprevious paper, we determine the superconductive condensate wavefunction. We show that thelow-lying elementary condensate excitations are analogous to the rotons in superfluid4He. We arguethat the rotons-like excitations account for the specific heat anomaly at the criticaltemperature. We discuss and compare with experimental observations the London penetrationlength, the Abrikosov vortices, the upper and lower critical magnetic fields, and thecritical current density. We give arguments to explain the origin of the Fermi arcs andFermi pockets. We investigate the nodal gap in the cuprate superconductors and discussboth the doping and temperature dependence of the nodal gap. We suggest that the nodal gapis responsible for the doping dependence of the so-called nodal Fermi velocity detected inangle resolved photoemission spectroscopy studies. We discuss the thermodynamics of thenodal quasielectron liquid and their role in the low temperature specific heat. We proposethat the ubiquitous presence of charge density wave in hole doped cuprate superconductorsin the pseudogap region originates from instabilities of the nodal quasielectrons drivenby the interaction with the planar CuO2 lattice. We investigate the doping dependence of thecharge density wave gap and the competition between charge order and superconductivity. Wediscuss the effects of external magnetic fields on the charge density wave gap andelucidate the interplay between charge density wave and Abrikosov vortices. Finally, weexamine the physics underlying quantum oscillations in the pseudogap region.  相似文献   

4.
According to recent experimental findings the leading pairing resides in the nodal (FS arcs) momentum region of hole doped cuprates. The pseudogap is an antinodal feature. A corresponding multiband model of the electronic background evolving with doping serves the usually presented phase diagram. The pairing is due by the pair-transfer between overlapping nodal defect (polaron) band and the itinerant band. A bare gap vanishing with extended doping between the antinodal defect subband and the itinerant band top leads to the formation of the pseudogap as a perturbative band-structure effect. The calculated behaviour of two superconducting gaps and of the pseudogap on the whole doping scale is in qualitative agreement with the observations. Arguments to include cuprates into the class of multiband-multigap superconductors are given by these results.  相似文献   

5.
Bogoliubov quasiparticle interference and localized high-energy excitations observed in cuprates in nodal and antinodal regions of the momentum space, respectively, would lead to a conclusion that only the nodal region might give rise to superconductivity whereas the antinodal one might be associated with the pseudogap. We argue that both pseudogap and superconducting states arise exactly in the antinodal region with pronounced nesting feature of the Fermi contour as spatially inhomogeneous incoherent and coherent states of pairs with large momentum. The nodal region gives rise to conventional superconducting pairing with zero momentum which, together with the pairing with large momentum in the antinodal region, forms a biordered superconducting state in the whole of the Brillouin zone. This coherent state with complicated momentum dependence of the order parameter manifests itself as a pair-density wave that can exist without any driving insulating order. We believe that quasiparticle interference, other than observed in the nodal region, should be observable in the antinodal region as well.  相似文献   

6.
In angle-resolved photoemission spectroscopy pseudogap phenomenon in high-temperature superconductors is observed as Fermi arcs, or truncated Fermi surface. Here I argue that the hole induced chiral spin texture scenario naturally leads to Fermi arcs by including hole hopping processes. Disappearance of part of the Fermi surface is associated with the effect of the coherence factor. Suppressed spectral weight of the holes turns out to be an electron-like component which has weight near (π,0) only and has some charge instability.  相似文献   

7.
We found that the length of the Fermi arc decreases with increasing out-of-plane disorder by performing angle resolved photoemission spectroscopy (ARPES) measurements in the superconducting state of optimally doped R=La and Eu samples of Bi2Sr2−xRxCuOy. Since out-of-plane disorder stabilizes the antinodal pseudogap as was shown in our previous study of the normal state, the present results indicate that this antinodal pseudogap persists into the superconducting state and decreases the Fermi arc length. We think that the shrinkage of the Fermi arc reduces the superfluid density, which explains the large suppression of the superconducting transition temperature when out-of-plane disorder is increased.  相似文献   

8.
In the underdoped high temperature superconductors, instead of a complete Fermi surface above Tc, only disconnected Fermi arcs appear, separated by regions that still exhibit an energy gap. We show that in this pseudogap phase, the energy-momentum relation of electronic excitations near EF behaves like the dispersion of a normal metal on the Fermi arcs, but like that of a superconductor in the gapped regions. We argue that this dichotomy in the dispersion is difficult to reconcile with a competing order parameter, but is consistent with pairing without condensation.  相似文献   

9.
One of the most puzzling aspects of the high Tc superconductors is the appearance of Fermi arcs in the normal state of the underdoped cuprate materials. These are loci of low energy excitations covering part of the Fermi surface that suddenly appear above Tc instead of the nodal quasiparticles. Based on a semiclassical theory, we argue that partial Fermi surfaces arise naturally in a d-wave superconductor that is destroyed by thermal phase fluctuations. Specifically, we show that the electron spectral function develops a square root singularity at low frequencies for wave vectors positioned on the bare Fermi surface. We predict a temperature dependence of the arc length that can partially account for the results of recent angle resolved photoemission experiments.  相似文献   

10.
We study the electronic structure of a strongly correlated d-wave superconducting state. Combining a renormalized mean field theory with direct calculation of matrix elements, we obtain explicit analytical results for the nodal Fermi velocity upsilon(F), the Fermi wave vector k(F), and the momentum distribution n(k) as a function of hole doping in a Gutzwiller projected d-wave superconductor. We calculate the energy dispersion E(k) and spectral weight of the Gutzwiller-Bogoliubov quasiparticles and find that the spectral weight associated with the quasiparticle excitation at the antinodal point shows a nonmonotonic behavior as a function of doping. Results are compared to angle resolved photoemission spectroscopy of the high-temperature superconductors.  相似文献   

11.
Using cluster perturbation theory, it is shown that the spectral weight and pseudogap observed at the Fermi energy in recent angle resolved photoemission spectroscopy of both electron- and hole-doped high-temperature superconductors find their natural explanation within the t-t(')-t(")-U Hubbard model in two dimensions. The value of the interaction U needed to explain the experiments for electron-doped systems at optimal doping is in the weak to intermediate coupling regime where the t-J model is inappropriate. At strong coupling, short-range correlations suffice to create a pseudogap, but at weak-coupling long correlation lengths associated with the antiferromagnetic wave vector are necessary.  相似文献   

12.
We study the superconducting state of the hole-doped two-dimensional Hubbard model using cellular dynamical mean-field theory, with the Lanczos method as impurity solver. In the underdoped regime, we find a natural decomposition of the one-particle (photoemission) energy gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.  相似文献   

13.
The possibility of interpreting the normal pseudogap state of cuprates as a result of the formation of spin and charge structures is investigated for solutions of the Hubbard model of a finite 2D cluster based on the mean field method. The iterative self-consistency procedure reduces the initial uncorrelated spin distributions to stable structures. The Fourier components of the charge and spin distributions in such structures have peaks for characteristic incommensurate quasi-momenta depending on the doping. It is shown that for any doping, the density of states of the system has a sharp minimum (pseudogap) at the Fermi level. This emergence of the gap just at the Fermi level is a property typical of not only the superconducting state, but also the normal state of spin glasses. The characteristics of the Fermi surface averaged over the implemented structures and the properties of quasiparticles in the nodal and antinodal regions of the quasi-momentum are considered.  相似文献   

14.
The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high Tc superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum sinmlator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to the mysteries of high Tc superconductivity. One obstacle to the ultimate understand- ing of high Tc superconductivity, from day one of its discovery, is the anomalous yet widespread pseudogap phenomena, for which a consensus is yet to be reached within the physics comnnmity, after over 27 years of intensive research efforts. In this article, we shall review the progress in the study of pseudogap phenomena in atomic Fermi gases in terms of both theoretical understanding and experimental observations. We show that there is strong, unambiguous evidence for the existence of a pseudogap in strongly interacting Fermi gases. In this context, we shall present a pairing fuctuation theory of the pseudogap physics and show that it is indeed a strong candidate theory for high Tc superconductivity.  相似文献   

15.
A precursor effect on the Fermi surface in the two-dimensional Hubbard model at finite temperatures near the antiferromagnetic instability is studied using three different itinerant approaches: the second order perturbation theory, the paramagnon theory (PT), and the two-particle self-consistent (TPSC) approach. In general, at finite temperature, the Fermi surface of the interacting electron systems is not sharply defined due to the broadening effects of the self-energy. In order to take account of those effects we consider the single-particle spectral function A(, 0) at the Fermi level, to describe the counterpart of the Fermi surface at T = 0. We find that the Fermi surface is destroyed close to the pseudogap regime due to the spin-fluctuation effects in both PT and TPSC approaches. Moreover, the top of the effective valence band is located around = (π/2,π/2) in agreement with earlier investigations on the single-hole motion in the antiferromagnetic background. A crossover behavior from the Fermi-liquid regime to the pseudogap regime is observed in the electron concentration dependence of the spectral function and the self-energy. Received 8 September 2000 and Received in final form 20 December 2000  相似文献   

16.
A microscopic theory for the electron spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. The Dyson equation for the single-electron Green’s function in terms of the Hubbard operators is derived and solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by the kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. The doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface, and the coupling constant λ are studied in the hole-doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function close to the Brillouin zone boundary are observed. The text was submitted by the authors in English.  相似文献   

17.
We use inelastic neutron scattering to probe magnetic excitations of an optimally electron-doped superconductor Nd1.85Ce0.15CuO4-delta above and below its superconducting transition temperature Tc=25 K. In addition to gradually opening a spin pseudogap at the antiferromagnetic ordering wave vector Q=(1/2,1/2,0), the effect of superconductivity is to form a resonance centered also at Q=(1/2,1/2,0) but at energies above the spin pseudogap. The intensity of the resonance develops like a superconducting order parameter, similar to those for hole-doped superconductors and electron-doped Pr0.88LaCe0.12CuO4. The resonance is therefore a general phenomenon of cuprate superconductors, and must be fundamental to the mechanism of high-Tc superconductivity.  相似文献   

18.
Yu Lan  Jihong Qin  Shiping Feng 《Physics letters. A》2013,377(34-36):2210-2215
The interplay between the superconducting gap and normal-state pseudogap in the bilayer cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. It is shown that the charge carrier interaction directly from the interlayer coherent hopping in the kinetic energy by exchanging spin excitations does not provide the contribution to the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, while only the charge carrier interaction directly from the intralayer hopping in the kinetic energy by exchanging spin excitations induces the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, and then the two-gap behavior is a universal feature for the single layer and bilayer cuprate superconductors.  相似文献   

19.
Phonon anomalies observed in various high Tc cuprates are analyzed theoretically within the Hubbard-Holstein model in the limit of strong local electron correlations and in presence of long-range Coulomb interaction. The phonon self-energy is evaluated by taking into account the charge collective modes that become critical upon doping approaching an instability towards an incommensurate charge density wave (ICDW) driven by electron correlations. The doping dependence of phonon softening features and the highly distinctive phonon self-energy dependence on the wave vector agree with experiments. We discuss relevance of dynamical corrections to the density correlation function to achieve a sizeable bond-stretching phonon softening with a kink-like profile away from the zone boundary.  相似文献   

20.
We propose that an extension of the exciton concept to doped Mott insulators offers a fruitful insight into challenging issues of the copper oxide superconductors. In our extension, new fermionic excitations called cofermions emerge in conjunction to generalized excitons. The cofermions hybridize with conventional quasiparticles. Then a hybridization gap opens, and is identified as the pseudogap observed in the underdoped cuprates. The resultant Fermi-surface reconstruction naturally explains a number of unusual properties of the underdoped cuprates, such as the Fermi arc and/or pocket formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号