首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The lattice constants, elastic properties, electronic structure and thermodynamic properties of Al3Nb with DO22 structure have been investigated by the first-principles calculation. The calculated lattice constants were consistent with the experimental values, and the structural stability was also studied from the energetic point of view. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated, and brittleness of Al3Nb was discussed in detail. Besides, the electronic structure of tetragonal Al3Nb was studied, which indicates a mixture of metallic bond and covalent bond in Al3Nb and reveals the underlying mechanism of the stability and elastic properties of Al3Nb. Finally, the thermodynamic properties of Al3Nb were calculated and the physical properties such as heat capacity and Debye temperature were predicted within the quasi-harmonic approximation.  相似文献   

2.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

3.
The effect of high hydrostatic pressure (up to 10.3?GPa) at room temperature on fluorescence lifetime τ for R line (2E→4A2 transition) in ruby Al2O3:V2+ was studied. The performed studies show the linear increase of τ with increasing pressure. At 10.3?GPa, τ is about 1.36 times higher than at ambient pressure. The obtained trend was explained by a model which considered the effect of pressure on τ through an induced change of line position, inter-ionic distance, compressibility, and molecular polarizability. A good agreement between the calculated and experimental values for τ was obtained.  相似文献   

4.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

5.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa.  相似文献   

6.
采用中频磁控溅射法制备了镱铒共掺Al2O3薄膜,铒镱掺杂浓度分别为0.3%,3.6%(摩尔分数,全文同).讨论了三价铒离子529nm和549nm光致发光的上转换机理.在291.8—573.3K温度区间测量了两绿上转换光谱荧光强度比的温度特性,拟合表达式为R=5.37exp(-738/T).366 K温度时灵敏度最大,为0.0039 K-1.结果表明镱铒共掺Al2O3薄膜适合作为小型、高温和高灵敏的光学温度传感材料. 关键词: 2O3薄膜')" href="#">镱铒共掺Al2O3薄膜 中频磁控溅射 上转换 荧光强度比  相似文献   

7.
We investigate the structural and elastic properties of LaTiO3 by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are obtained. These properties in the equilibrium phase are well consistent with the available experimental data. The pressure dependence of the elastic constants, ductility, mechanical stabilities, sound velocity and Debye temperatures are investigated for the first time. From the ratio G/B, we conclude that LaTiO3 is ductile at 0 GPa and becomes more ductile at high pressure. In addition, the anisotropy factors for every symmetry plane and axis as well as linear bulk modulus at diverse pressures have been obtained.  相似文献   

8.
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K.  相似文献   

9.
翟红村  李晓凤  杜军毅  姬广富 《中国物理 B》2012,21(5):57102-057102
The mechanical stability,elastic,and thermodynamic properties of the anti-perovskite superconductors MNNi 3(M=Zn,Mg,Al) are investigated by means of the first-principles calculations.The calculated structural parameters and elastic properties of MNNi 3 are in good agreement with the experimental and the other theoretical results.From the elastic constants under high pressure,we predict that ZnNNi 3,MgNNi 3,and AlNNi 3 are not stable at the pressures above 61.2 GPa,113.3 GPa,and 122.4 GPa,respectively.By employing the Debye model,the thermodynamic properties,such as the heat capacity and the thermal expansion coefficient,under pressures and at finite temperatures are also obtained successfully.  相似文献   

10.
Using first-principles calculations, we predict mechanical and thermodynamic properties of both Mg17Al12 and Mg2Sn precipitates in Mg–Al–Sn alloys. The elastic properties including the polycrystalline bulk modulus, shear modulus, Young’s modulus, Lame’s coefficients and Poisson’s ratio of both Mg17Al12 and Mg2Sn phases are determined with the Voigt–Reuss–Hill approximation. Our results of equilibrium lattice constants agree closely with previous experimental and other theoretical results. The ductility and brittleness of the two phases are characterized with the estimation from Cauchy pressure and the value of B/G. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. The higher Debye temperature of Mg17Al12 phase means that it has a higher thermal conductivity and strength of chemical bonding relative to Mg2Sn. The anisotropic sound velocities also indicate the elastic anisotropies of both phase structures. Additionally, density of states and Mulliken population analysis are performed to reveal the bonding nature of both phases. The calculations associated with phonon properties indicate the dynamical stability of both phase structures. The temperature dependences of thermodynamic properties of the two phases are predicted via the quasi-harmonic approximation.  相似文献   

11.
Abstract

The structural, mechanical, elastic anisotropic, thermodynamic and optoelectronic properties of Pmn21-B1–xAlxN are investigated using density functional theory (DFT) calculations. For BN and AlN, the lattice parameters, elastic constants and elastic modulus are found to be in agreement with others’ theoretical data. The absence of any imaginary phonon frequencies in the entire Brillouin zone confirms that Pmn21-B1–xAlxN alloys are dynamically stable. The vibration modes transfer from high frequency to low frequency with the increase of the component Al. All of Pmn21-B1–xAlxN (x = 0, 0.25, 0.50, 0.75, 1) behave in a brittle manner. Ternary BAlN alloys are more anisotropic than BN and AlN. The Debye temperature decreases with the increase of the component Al. At temperatures below 2000 K, the heat capacity of Pmn21-B1–xAlxN increases with the increase of the component Al. For B0.5Al0.5N, below the Fermi level, B p contributes more than Al p, whereas above the Fermi level, Al p contributes more than B p. With the increase of composition Al, B–N interactions become weaker and Al–N interactions become stronger, and the dielectric function, absorption and Raman intensity drift from high-frequency to low-frequency.  相似文献   

12.
The pseudo-potential plane-wave method using the generalized gradient approximation (GGA) within the framework of the density functional theory is applied to study the structural and thermodynamic properties of Y 3Al5O12. The lattice constants and bulk modulus are calculated. They keep in good agreement with other theoretical data and experimental results. The quasi-harmonic Debye model, in which the phononic effects are considered, is applied to the study of the thermodynamic properties. The temperature effect on the structural parameters, bulk modulus, thermal expansion coefficient, specific heats and Debye temperatures in the whole range from 0 to 20 GPa and temperature range from 0 to 1500 K.  相似文献   

13.
The structural, electronic, elastic and thermodynamic properties of α-phase Na3N under pressure are investigated by performing first principles calculations within generalized gradient approximation. The elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio dependencies on pressure are also calculated. The thermodynamic properties of the α-phase Na3N are calculated using the quasi-harmonic Debye model. The dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter on pressure and temperature are investigated systematically in the ranges of 0–1 GPa and 0–100 K.  相似文献   

14.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

15.
Abstract

The condition of the formation of quasicrystal in Al4Mn and Al6Cr under high static pressure has been investigated for the first time. I-phase and T-phase have been observed in electron diffraction experiment. The structures of Al4Mn quenched at about 100 K/s are different under various pressure from 0.95GPa to 4.45GPa. The phase transition from I- and T-phase to crystal phase has also been investigated.  相似文献   

16.
The structural, elastic, electronic and optical properties of the platinum-based superconductor SrPt3P under pressure are investigated by the generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange-correlation functional in the framework of density-functional theory. The calculated structural parameters (a, c) and the primitive cell volume V of SrPt3P at the ground state are in good agreement with the available experimental data and seem to be better than other calculated results. The pressure dependences of the elastic constants \mathop C\nolimits_{ij}, bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio σ of SrPt3P are also obtained successfully. The computed elastic constants indicate that SrPt3P is mechanically stable up to 100 GPa. The obtained B/G is 2.56 at the ground state, indicating that SrPt3P behaves in a ductile manner. The ratio B/G also increases with growing pressures, indicating that the structure becomes more and more ductile. Even though SrPt3P is an ionic-covalent crystal, the obtained density of states shows that it has metallic characteristic. These conclusions can be further demonstrated by analysing the charge and Mulliken population. In addition, we have investigated the dielectric function and the loss function. It is found that the dielectric function in (E||x, E||y) is isotropic, whereas the directions (E||x, E||z) are anisotropic; the effect of pressure on the loss function of the deep ultraviolet region gradually increases as the pressure increases.  相似文献   

17.
We have investigated the structural, mechanical and lattice dynamical properties of ZrW2 and HfW2 compounds in cubic C15 (space group Fd-3m), hexagonal C14 (space group P63/mmc) and C36 (space group P63/mmc) phases using generalized gradient approximation within the plane-wave pseudo-potential density functional theory. We have found that ZrW2 and HfW2 in cubic C15 phase are the most stable among the considered phases. From calculated elastic constants, it is shown that all phases are mechanically stable according to the elastic stability criteria. The related mechanical properties, such as bulk, shear and Young moduli, Poisson’s ratio, Debye temperature and hardness have been also calculated. The results show that ZrW2 and HfW2 compounds are ductile in nature with respect to the B/G and Cauchy pressure analysis. The phonon dispersion curves, phonon density of states and some thermodynamic properties are computed and discussed exhaustively for considered phases.  相似文献   

18.
张旭东  姜伟 《中国物理 B》2016,25(2):26301-026301
The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L1_2 structure Al_3Tm and Al_3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al_3Tm and A_3Lu keep their dynamical stabilities in L1_2 structure up to 100 GPa. The elastic properties and Debye temperatures for Al_3Tm and Al_3 Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the threedimensional(3D) curved surface of Young's modulus. The calculated results show that Al_3Tm and Al_3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al_3Tm and Al_3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications.  相似文献   

19.
Abstract

We present the Raman spectrum of Tm3Al5O12 single crystal and its pressure dependence for hydrostatic pressure up to 11GPa and room temperature. Tm3Al5O12 belongs to the crystal family of rare earth garnets (Re3A12(AlO4)3, Re: Gd, Tb, Dy, Er,…), which crystallize in the body-centered cubic lattice and contains eight molecular units in the conventional unit cell, Group theory predicts 25 Raman active modes for these compounds, while experimentally are observed 15 modes. As crystal volume decreases all Raman peaks exhibit pressure coefficients varying from 0.7 to 5.6cm?1/ GPa. A large part of the vibrational spectra of these compounds could be explained taking into account the vibrational properties of molecular subunits, namely AlO4.  相似文献   

20.
The article reports on the effect of the addition of copper in the Al2O3 film on its mechanical and optical properties. The Al–Cu–O films were reactively co-sputtered using DC pulse dual magnetron in a mixture of Ar + O2. One magnetron was equipped with a pure Al target and the second magnetron with a composed Al/Cu target. The amount of Al and Cu in the Al–Cu–O film was controlled by the length of pulse at the Al/Cu target. The Al–Cu–O films with ≤16 at.% Cu were investigated in detail. The addition of Cu in Al2O3 film strongly influences its structure and mechanical properties. It is shown that (1) the structure of Al–Cu–O film gradually varies with increasing Cu content from γ-Al2O3 at 0 at.% Cu through (Al8−2x,Cu3x)O12 nanocrystalline solid solution to CuAl2O4 spinel structure, (2) the Al–Cu–O films with ≥3 at.% Cu exhibit (i) relatively high hardness H increasing from ∼15 GPa to ∼20 GPa, (ii) enhanced elastic recovery We increasing from ∼67% to ∼76% with increasing Cu content from ∼5 to ∼16 at.% Cu and (iii) low values of Young's modulus E* satisfying the ratio H/E* > 0.1 at ≥5 at.% Cu, and (3) highly elastic Al–Cu–O films with H/E* > 0.1 exhibit enhanced resistance to cracking during indentation under high load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号