首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
To gain fundamental insight into the relationship between length scales and mechanical behaviour, Ni-Fe multilayered materials with a 5-μm-layer thickness and a modulated grain size distribution have been synthesized by pulsed electrodeposition. Microstructural studies by SEM and TEM reveal the alternating growth of well-defined layers with either nano (d = 16 nm) or coarse grains (d ≥ 500 nm). Room temperature tensile tests have been performed to investigate the mechanical response and understand the underlying deformation mechanisms. Tensile test results and fractographic studies demonstrate that the overall room temperature mechanical behaviour of the multilayered material, i.e. strength and ductility, is governed primarily by the layers containing nanocrystalline grains. The measured properties have been discussed in the context of modulated grain structure of the multilayered sample and contribution of each grain size regime to the overall strength and ductility.  相似文献   

2.
The Weibull distribution is often used to model the earthquake interevent times distribution (ITD). We propose a link between the earthquake ITD on single faults with the Earth’s crustal shear strength distribution by means of a phenomenological stick–slip model. For single faults or fault systems with homogeneous strength statistics and power-law stress accumulation we obtain the Weibull ITD. We prove that the moduli of the interevent times and crustal shear strength are linearly related, while the time scale is an algebraic function of the scale of crustal shear strength. We also show that logarithmic stress accumulation leads to the log-Weibull ITD. We investigate deviations of the ITD tails from the Weibull model due to sampling bias, magnitude cutoff thresholds, and non-homogeneous strength parameters. Assuming the Gutenberg–Richter law and independence of the Weibull modulus on the magnitude threshold, we deduce that the interevent time scale drops exponentially with the magnitude threshold. We demonstrate that a microearthquake sequence from the island of Crete and a seismic sequence from Southern California conform reasonably well to the Weibull model.  相似文献   

3.
Simultaneous in situ pressure–resistance measurements were carried out up to 40 GPa using a multianvil apparatus with synchrotron-based X-ray diffraction (XRD) measurements. Pressure-induced electrical resistance changes in zirconium were measured at ambient temperatures and two discontinuities were observed around the α–ω and ω–β structural phase transitions. The transition pressures were strictly determined from simultaneous measurements of the electrical resistance and in situ XRD as 7.96±0.16 and 34.5±0.3 GPa, respectively, using an equation of state for gold as the pressure scale. The precisely determined transition pressures are available for room temperature pressure calibration points for large volume presses installed at offline laboratories.  相似文献   

4.
F. Naghdi  J.Y. Kang  H.S. Kim 《哲学杂志》2015,95(31):3452-3466
The shear deformation behaviour of an extruded Mg–4Zn–0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.  相似文献   

5.
A facile approach was utilized to introduce starch nanocrystals (SNCs) onto sisal fiber (SF) to improve the interfacial adhesion between SF and starch. For this, fibers were treated with alkali and then subjected to cold plasma treatment to increase the accessibility with SNCs, which was confirmed through X-ray photoelectron spectroscopy (XPS). It was found that due to the influence of cold plasma treatment, new functional groups were introduced onto SF. The surface characteristics of SF were examined by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The observed results suggested that SNCs were successfully distributed onto SF. Tensile strength and interfacial shear strength of fibers treated under different conditions were calculated and compared through a two-parameter Weibull model. The highest interfacial shear strength of 3.05 MPa was obtained by Alkali-300 W-SNCs, which indicated an increase of 80.6% than untreated SF. It has also been proved that the starch nanocrystals produced hydrogen bonding and physical interlocking between sisal fiber and starch. Notably, the outcome of this investigation indicates that SNCs may be applied for the fabrication of high performance, environmentally friendly sisal/starch composites for a range of technological applications.  相似文献   

6.
Abstract

Films of high‐molecular‐weight amorphous polystyrene (PS, M w = 225 kg/mol, M w/M n = 3, T g‐bulk = 97°C, where T g‐bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M w = 87 kg/mol, M w/M n = 2, T g‐bulk = 109°C) were brought into contact in a lap‐shear joint geometry at a constant healing temperature T h, between 44°C and 114°C, for 1 or 24 hr and submitted to tensile loading on an Instron tester at ambient temperature. The development of the lap‐shear strength σ at an incompatible PS–PMMA interface has been followed in regard to those at compatible PS–PS and PMMA–PMMA interfaces. The values of strength for the incompatible PS–PMMA and compatible PMMA–PMMA interfaces were found to be close, both being smaller by a factor of 2 to 3 than the values of σ for the PS–PS interface developed after healing at the same conditions. This observation suggests that the development of the interfacial structure at the PS–PMMA interface is controlled by the slow component, i.e., PMMA. Bonding at the three interfaces investigated was mechanically detected after healing for 24 hr at T h = 44°C, i.e., well below T g‐bulks of PS and PMMA, with the observation of very close values of the lap‐shear strength for the three interfaces considered, 0.11–0.13 MPa. This result indicates that the incompatibility between the chain segments of PS and PMMA plays a negligible negative role in the interfacial bonding well below T g‐bulk.  相似文献   

7.
As the length scale of sample dimensions is reduced to the micron and sub-micron scales, the strength of various materials has been observed to increase with decreasing size, a fact commonly referred to as the ‘sample size effect’. In this work, the influence of temperature on the sample size effect in copper is investigated using in situ microcompression testing at 25, 200 and 400 °C in the SEM on vacuum-annealed copper structures, and the resulting deformed structures were analysed using X-ray μLaue diffraction and scanning electron microscopy. For pillars with sizes between 0.4 and 4 μm, the size effect was measured to be constant with temperature, within the measurement precision, up to half of the melting point of copper. It is expected that the size effect will remain constant with temperature until diffusion-controlled dislocation motion becomes significant at higher temperatures and/or lower strain rates. Furthermore, the annealing treatment of the copper micropillars produced structures which yielded at stresses three times greater than their un-annealed, FIB-machined counterparts.  相似文献   

8.
Metal nanoparticles need coating material so as to avoid aggregating to each other. On the contrary, there are occasions when the coating materials are required to be removed. Here, a theoretical model to relate removability of coating materials to their molecular structure is suggested. The model is used to find an optimum coating material, secondary amine, for use in low-temperature interconnection material. An interconnection made of methyloctylamine-coated silver nanoparticles was formed between a pair of copper electrodes by heating and pressurizing the nanoparticles and electrodes at 250 °C and 2.5 MPa, respectively, for 150 s. Shear strength and thermal conductivity of the formed interconnection were 17.8 MPa and 219 W/mK, respectively. This thermal conductivity value is greater than that obtained using Pb–Sn and silver solders.  相似文献   

9.
A single-crystal CaF2 (111) was irradiated with single and multiple laser (Ti:sapphire, 800 nm, 25 fs) shots at fluences ranging from 0.25 to 1.5 J cm?2. In this fluence regime, a single laser pulse usually leads to typical bump-like features ranging from 200 nm to 1.5 μm in diameter and 10–50 nm in height. These bumps are related to compressive stresses due to a pressure build-up induced by fast laser heating and their subsequent relaxation. When CaF2 is irradiated with successive (in our case 20) shots at a laser fluence of 1.5 J cm?2, nanocavities at the top of the microbumps are observed. The formation of these nanocavities is regarded as an explosion and is attributed to the explosive expansion generated by shock waves due to laser-induced plasma after the nonlinear absorption of the laser energy by the material. Such kinds of surface structures at the nanometre scale could be attractive for nanolithography.  相似文献   

10.
11.
Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R?2.155 in fairly good agreement with experimental values reported in the literature.  相似文献   

12.
Physical processes in laser–matter interaction used to be determined by generation of fast electrons resulting from efficient conversion of the absorbed laser radiation. Composite materials offer the possibility to control the absorption by choice of the host material and dopants. Reported here strong absorption of ultrashort laser pulse in a composite carbon-based nanomaterial including single-walled carbon nanotubes (SWCNTs) or multilayer graphene was measured in the intensity range between 1012 and 1016 W cm?2. A protein (lysozyme) was used as the host. The maximum absorption of femtosecond laser pulse has reached 92–96 %. The optical damage thresholds of the coatings were registered at an intensity of (1.1 ± 0.5) × 1013 W cm?2 for the embedded SWCNTs and at (3.4 ± 0.3) × 1013 W cm?2 for the embedded graphene. Encapsulated variant of the dispersed nanomaterial was investigated as well. It was found that supernatant protein in the coating material tends to dominate the absorption process, independently of the embedded nanomaterial. The opposite was observed for the encapsulated material.  相似文献   

13.
Abstract

Experimental value of strength of nano-sized crystal under uniform triaxial (hydrostatic) tension was obtained for the first time. Strength was measured by in situ high-field mechanical testing of tungsten defect-free nano-sized specimen carried out inside a field-ion microscope. At temperature 77 K, this strength is 28 ± 3 GPa. Based on the MD simulation findings, it is ascertained that under these conditions the instability of an entire nano-sized specimen (global instability) is initiated by the Bain transition within a local region of the specimen. The model of ‘fluctuation-induced Bain transition’ is offered. Within the framework of the model proposed, it is exhibited that possibility of realisation of such local Bain transition under global hydrostatic tension is due to the fluctuation of local tensile stresses. In general, it is shown that fluctuation-induced Bain transition governs the level of the strength of nano-sized bcc crystals under hydrostatic tension.  相似文献   

14.
We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser–target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.  相似文献   

15.
A new, low-temperature sealed tube technique for combustion of organic carbon prior to subsequent off-line isotope analysis is proposed. Complete oxidation is achieved with potassium peroxodisulfate and silver permanganate as oxidants at temperatures not exceeding 500 °C. The combustion of gaseous (methane), solid (cane sugar, vanilla, N-thiazolyl-2-sulfamide, ascorbic acid, phenanthrene, thiourea, polyethylenefilm, tetrafluoropolyethylene, polyetheretherketone, graphite, and Suwannee River Fulvic Acid), and liquid (tetrachloroethene, toluene, and oil) model compounds and international standards was tested. A 24 h combustion at 500 °C was sufficient for complete oxidation in all cases. The time required for complete oxidation of Suwannee River Fulvic Acid, typical of refractory freshwater dissolved organic carbon, as a function of combustion temperature was 2 h at 500 °C, 6 h at 400 °C, and 24 h at 300 °C. Preparation of saline solution parallels of cane sugar, vanilla, N-thiazolyl-2-sulfanilamide, and ascorbic acid gave consistent results. For reproducible δ13C analyses using a Thermoquest MAT 252 MS, a minimum of 5 µg C had to be combusted. Reliable 14C results, measured at an accelerator mass spectrometer facility, were obtained from coal and from cane sugar combusted for 24 h at 500 °C by the proposed method.  相似文献   

16.
G. Sainath  P. Rohith 《哲学杂志》2013,93(29):2632-2657
Abstract

Molecular dynamics simulations have been performed to understand the size-dependent tensile deformation behaviour of 〈1 0 0〉 Cu nanowires at 10 K. The influence of nanowire size has been examined by varying square cross-section width (d) from 0.723 to 43.38 nm using constant length of 21.69 nm. The results indicated that the yielding in all the nanowires occurs through nucleation of partial dislocations. Following yielding, the plastic deformation in small size nanowires occurs mainly by slip of partial dislocations at all strains, while in large size nanowires, slip of extended dislocations has been observed at high strains in addition to slip of partial dislocations. Further, the variations in dislocation density indicated that the nanowires with d > 3.615 nm exhibit dislocation exhaustion at small strains followed by dislocation starvation at high strains. On the other hand, small size nanowires with d < 3.615 nm displayed mainly dislocation starvation at all strains. The average length of dislocations has been found to be same and nearly constant in all the nanowires. Both the Young’s modulus and yield strength exhibited a rapid decrease at small size nanowires followed by gradual decrease to saturation at larger size. The observed linear increase in ductility with size has been correlated with the pre- and post-necking deformation. Finally, dislocation–dislocation interactions leading to the formation of various dislocation locks, the dislocation–stacking fault interactions resulting in the annihilation of stacking faults and the size dependence of dislocation–surface interactions have been discussed.  相似文献   

17.
Representative lignite and gasified material samples were retrieved form a cooled down gasifier. The samples were taken at various heights in the gasifier that operated on lignite, under stable conditions. The proximate analyses, ash composition and temperature in the gasifier were determined according to standard procedures. The main minerals found in the present investigation were bassanite, illite, quartz, kaolinite, calcite and the only iron bearing mineral was found to be pyrite. The trend in the estimated particle surface temperature profile shows an increase in the drying, pyrolysis, gasification and combustion zones from about 300 °C to just over 900 °C. About 1/3 down the gasifier, an average particle temperature of about 400 °C and particle surface temperature of about 600 °C was measured where pyrite conversion started. About 2/3 down the gasifier, where an average temperature of about 700 °C and particle surface temperature of about 900 °C was measured, all the pyrite was converted and in the bottom part of the gasifier, oxidation of the iron started to play a role and hematite and an iron containing glass formed at an average temperature of > 800 °C and surface temperature of 900 °C.  相似文献   

18.
In this work we present the results obtained by means of Mössbauer Spectroscopy to determine and characterize different corrosion products coming from a carbon steel screw-nut set exposed to mountain weather conditions for more than 70 years, in Las Cuevas (Mendoza–Argentina). Measurements at room temperature and 15 K were performed, detecting a great quantity of goethite but also lepidocrocite, hematite, magnetite and maghemite. This study was complemented by material characterization in terms of chemical composition, microscopic observation and X-ray diffraction analysis.  相似文献   

19.
The polymeric blends of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) with equal composition by weight have been irradiated with 50 MeV Li3+ ions at different fluences. The AC electrical properties of polymeric blends were measured in the frequency range 0.05–100 kHz, and at temperature range 40–150 °C using LCR meter. There is an exponential increase in conductivity with log of frequency and effect is significant at higher fluences. The value of tan δ and dielectric constant are observed to change appreciably due to irradiation. The loss factor (tan δ) versus frequency plot suggests that the capacitors of polymeric blend of PVC and PET may be useful below 10 kHz. No change in dielectric constant was observed over a wide temperature range up to 150 °C. Thermal stability was studied by thermogravimetric analysis. Thermal analysis revealed that chain scission is the dominant phenomena in the polymeric blends resulting in the reduction of its thermal stability. It appears from differential scanning calorimetry studies that the melting temperature decreases as fluence increases. FTIR spectra measurements also revealed that the material suffered severe degradation through bond breaking beyond the fluence of 2.3×1013 ions/cm2.  相似文献   

20.
Lightweight and thermally insulating aerogel glass materials   总被引:1,自引:0,他引:1  
Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17–0.18 W/(mK)], high visible transparency (T vis ≈ 91–96 % at 500 nm), low density (ρ ≈ 1.60–1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus E r ≈ 2.0–6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means of thermo-gravimetric analysis, scanning electron microscopy, nanoindentation, and Fourier transform infrared spectroscopy. Strategies of improving further the mechanical strength of the obtained aerogel glass materials are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号