首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Naghdi  J.Y. Kang  H.S. Kim 《哲学杂志》2015,95(31):3452-3466
The shear deformation behaviour of an extruded Mg–4Zn–0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.  相似文献   

2.
The discontinuous yield behaviour (DYB) of Inconel 600 was studied during hot compression tests at temperatures in range of 850–1150°C and strain rates of 0.001–1?s?1. The yield point phenomena were observed in the temperature range of 850–1000°C and strain rates of 0.001–0.1 s?1. The DYB was modelled by considering the evolution of dislocation density at the early stages of yielding. The opposite effects of dislocation multiplication, dislocation interaction (work hardening) and dynamic recovery (DRV) were considered. It was shown that the dislocation multiplication and DRV result in flow softening, while the dislocation interaction leads to work hardening. The model was established in a way to consider the effects of various microstructural evolutions on the σ(ε) function. The discontinuous flow curves were fitted by the developed model with acceptable precision. The variations of material constants with temperature and strain rate were found physically meaningful. The dislocation multiplication parameter was determined at various temperatures and strain rates. It was concluded that the rate of dislocation multiplication increases as temperature rises or strain rate declines. Accelerated dislocation multiplication leads to less drop in yield stress between the upper and lower yield points.  相似文献   

3.
ABSTRACT

Ultra-fine grained copper with nanotwins is found to be both strong and ductile. It is expected that nanocrystalline metals with lamella grains will have strain hardening behaviour. The main unsolved issues on strain hardening behaviour of nanocrystalline metals include the effect of stacking fault energy, grain shape, temperature, strain rate, second phase particles, alloy elements, etc. Strain hardening makes strong nanocrystalline metals ductile. The stacking fault energy effects on the strain hardening behaviour are studied by molecular dynamics simulation to investigate the uniaxial tensile deformation of the layer-grained and equiaxed models for metallic materials at 300?K. The results show that the strain hardening is observed during the plastic deformation of the layer-grained models, while strain softening is found in the equiaxed models. The strain hardening index values of the layer-grained models decrease with the decrease of stacking fault energy, which is attributed to the distinct stacking fault width and dislocation density. Forest dislocations are observed in the layer-grained models due to the high dislocation density. The formation of sessile dislocations, such as Lomer–Cottrell dislocation locks and stair-rod dislocations, causes the strain hardening behaviour. The dislocation density in layer-grained models is higher than that in the equiaxed models. Grain morphology affects dislocation density by influencing the dislocation motion distance in grain interior.  相似文献   

4.
B. W. Chua  M. O. Lai 《哲学杂志》2013,93(19):2919-2939
Bulk Mg–5Al alloys were consolidated from powders that had been mechanically alloyed over different milling durations. The microstructural evolution, and physical and mechanical properties of the alloys were investigated. Mechanical measurements revealed a change in deformation behaviour after certain milling durations. At short milling duration, high yield strength was obtained through dislocation strengthening mechanisms predominantly by grain refinement and to a lesser extent by solid solution strengthening and particle dispersion strengthening. However, at longer milling durations, low yield strength was observed and the strengthening mechanisms at work in short milling durations appeared to be no longer effective. Enhanced ductility with no work hardening behaviour was observed in samples with a mean grain size of 45?nm. It appeared that the significantly large increase in the grain boundary regions played an important role in the room temperature deformation of the alloys. The possibility of a diminishing effect of the dislocation strengthening mechanisms and the onset of grain boundary deformation modes for the softening phenomenon and the absence of work hardening at some nanoscale grain sizes are discussed.  相似文献   

5.
The plastic deformation of bulk nanotwinned copper with embedded cracks under tension has been explored by using molecular dynamics simulations. Simulation results show that the cracks mainly act as dislocation sources during the plastic deformation and occasionally as sinks at later stage. The dislocation pile-up, accumulation and transformation at twin boundaries (TBs) control the plastic hardening and softening deformations. The TB dislocation pile-up zone is estimated to be 5.6–8 nm, which agrees well with previous experimental and simulation results. Furthermore, it is found that the flow stress vs. dislocation density at the hardening stage follows the Taylor-type relationship.  相似文献   

6.
7.
F. Long  L. Balogh  M. R. Daymond 《哲学杂志》2013,93(31):2888-2914
Abstract

The evolution of dislocation density and microstructure of a hot rolled Zr–2.5Nb alloy under compressive plastic strain, at room temperature, was analysed using neutron diffraction and transmission electron microscopy (TEM). The dislocation densities of type 〈a〉, 〈c + a〉 and 〈c〉 dislocations at different plastic strains in the elastic–plastic transition regime and plastic regime have been measured by diffraction line profile analysis (DLPA). TEM microstructure characterization revealed the operation of different slip systems. It has been found that slip of type 〈a〉 dislocations contributed to most of the plastic strain at the early stage of deformation, and strong pyramidal 〈c + a〉 slip did not occur until the deformation was fully plastic. Unambiguous evidence of basal slip occurring at room temperature in Zr is provided. Loading along a plate direction with more basal poles favoured the operation of basal and pyramidal slip. Dislocation features including relative edge:screw character of 〈c + a〉 dislocations are shown to be different under tension and compression loading, providing a mechanistic driver for the previously observed asymmetry in critical resolved shear stress for 〈c + a〉 slip.  相似文献   

8.
G. Sainath  P. Rohith 《哲学杂志》2013,93(29):2632-2657
Abstract

Molecular dynamics simulations have been performed to understand the size-dependent tensile deformation behaviour of 〈1 0 0〉 Cu nanowires at 10 K. The influence of nanowire size has been examined by varying square cross-section width (d) from 0.723 to 43.38 nm using constant length of 21.69 nm. The results indicated that the yielding in all the nanowires occurs through nucleation of partial dislocations. Following yielding, the plastic deformation in small size nanowires occurs mainly by slip of partial dislocations at all strains, while in large size nanowires, slip of extended dislocations has been observed at high strains in addition to slip of partial dislocations. Further, the variations in dislocation density indicated that the nanowires with d > 3.615 nm exhibit dislocation exhaustion at small strains followed by dislocation starvation at high strains. On the other hand, small size nanowires with d < 3.615 nm displayed mainly dislocation starvation at all strains. The average length of dislocations has been found to be same and nearly constant in all the nanowires. Both the Young’s modulus and yield strength exhibited a rapid decrease at small size nanowires followed by gradual decrease to saturation at larger size. The observed linear increase in ductility with size has been correlated with the pre- and post-necking deformation. Finally, dislocation–dislocation interactions leading to the formation of various dislocation locks, the dislocation–stacking fault interactions resulting in the annihilation of stacking faults and the size dependence of dislocation–surface interactions have been discussed.  相似文献   

9.
Abstract

The low cycle fatigue (LCF) performance of AA6063 Al–Mg–Si alloy at under-aged (UA), peak-aged (PA) and over-aged (OA) conditions has been examined to understand the micromechanism of fatigue and the associated dynamic structural changes in this alloy. The LCF behaviour of the differently aged AA6063 alloys has been studied at strain amplitudes ranging between 0.2 and 1.0% under strain control mode. The UA state exhibits pronounced cyclic hardening unlike the PA and the OA states at strain amplitudes greater than 0.4%. The PA and the OA states show hardening only for a few cycles followed by prolonged softening. Characterisations of the micro- and the sub-structural alterations due to LCF establish that the phenomenon of dynamic precipitation results in cyclic hardening the UA alloy. The softening of PA alloy occurs due to shearing of precipitates and that in the OA alloy takes place owing to reversibility of slip by the formation and annihilation of the Orowan loops around the β (Mg2Si) precipitates. Analyses of the hysteresis loops reveal Masing, nearly-Masing and non-Masing behaviour in the UA, OA and PA states, respectively. Analyses of the asymmetry factor of the hysteresis loops assist to infer that the Masing behaviour in the UA alloy is due to dislocation–dislocation interactions, whereas the nearly-Masing behaviour in the OA alloy and the non-Masing behaviour in the PA alloy are the consequence of varying degrees of dislocation–precipitate interactions associated with inhomogeneous deformation.  相似文献   

10.
Lin Yuan  Peng Jing     《哲学杂志》2016,96(22):2397-2411
Two types of nanocrystalline polycrystalline silver models in bulk, film and nanowire forms were constructed with layer-grained or equiaxed grain morphologies and average grain sizes of ~7.8 and ~14.7 nm. Uniaxial tensile deformation was performed to investigate the effect of grain morphology and free surface on the plastic deformation behaviour under the strain rate of 5 × 108 and 107 s?1 at 0.1 K. Grain Boundary (GB) orientation and dimensions in layer-grained morphology promoted the formation of sessile dislocation structures. Some dislocations interacted with each other and some dislocations got obstructed by stacking faults. However, the resulting configurations did not last long enough to cause strain hardening. Strain softening was observed in all models except for the layer-grained models in bulk form, where steady plastic flow was observed after yield. The location and orientation of free surfaces with respect to GBs imposed geometric constraints on the deformation mechanisms (GB sliding and formation of sessile dislocations) which produced asymmetric stress states that influenced the elastic as well as plastic response of the material. The yield stress and flow stress were much smaller at lower strain rate simulations. The proportion of perfect dislocations increased as the strain rate decreased from 5 × 108 to 107 s?1 due to the decrease of applied stress. Dislocations were mainly emitted from grain boundaries or triple junctions at both high and low strain rate deformations. These results provided insights into the understanding of layer-grained nanocrystalline materials and the synthesis of materials with both high strength and ductility.  相似文献   

11.
Recent interest in the study of stacking faults and non-basal slip in Mg alloys is partly based on the argument that these phenomena positively influence mechanical behaviour. Inspection of the published literature, however, reveals that there is a lack of fundamental information on the mechanisms that govern the formation of stacking faults, especially I1-type stacking faults (I1 faults). Moreover, controversial and sometimes contradictory mechanisms have been proposed concerning the interactions between stacking faults and dislocations. Therefore, we describe a fundamental transmission electron microscope investigation on Mg 2.5 at. % Y (Mg–2.5Y) processed via hot isostatic pressing (HIP) and extrusion at 623 K. In the as-HIPed Mg–2.5Y, many 〈c〉 and 〈a〉 dislocations, together with some 〈c + a〉 dislocations were documented, but no stacking faults were observed. In contrast, in the as-extruded Mg–2.5Y, a relatively high density of stacking faults and some non-basal dislocations were documented. Specifically, there were three different cases for the configurations of observed stacking faults. Case (I): pure I2 faults; Case (II): mixture of I1 faults and non-basal dislocations having 〈c〉 component, together with basal 〈a〉 dislocations; Case (III): mixture of predominant I2 faults and rare I1 faults, together with jog-like dislocation configuration. By comparing the differences in extended defect configurations, we propose three distinct stacking fault formation mechanisms for each case in the context of slip activity and point defect generation during extrusion. Furthermore, we discuss the role of stacking faults on deformation mechanisms in the context of dynamic interactions between stacking faults and non-basal slip.  相似文献   

12.
Sho Kujirai 《哲学杂志》2020,100(16):2106-2127
ABSTRACT

The mechanical properties of metals used as structural materials are significantly affected by hot (or warm) plastic working. Therefore, it is industrially important to predict the microscopic behaviour of materials in the deformation process during heat treatment. In this process, a number of nuclei are generated in the vicinity of grain boundaries owing to thermal fluctuation or the coalescence of subgrains, and dynamic recrystallisation (DRX) occurs along with the deformation. In this paper, we develop a DRX model by coupling a dislocation-based crystal plasticity model and a multi-phase-field (MPF) model through the dislocation density. Then, the temperature dependence of the hardening tendency in the recrystallisation process is introduced into the DRX model. A multiphysics simulation for pure Ni is conducted, and then the validity of the DRX model is investigated by comparing the numerical results of microstructure formation and the nominal stress–strain curve during DRX with experimental results. The obtained results indicate that in the process of DRX, nucleation and grain growth occur mainly around grain boundaries with high dislocation density. As deformation progresses, new dislocations pile up and subsequent nucleation occurs in the recrystallised grains. The influence of such microstructural evolution appears as oscillation in the stress–strain curve. From the stress–strain curves, the temperature dependence in DRX is observed mainly in terms of the yield stress, the hardening ratio, and the change in the hardening tendency after nucleation occurs.  相似文献   

13.
Abstract

The grain refinement and mechanical properties of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing (ECAP) at a temperature of 673 K were examined. The microstructure evolution was characterised by the development of a large number of low-angle subboundaries at small strains. An increase in the true strain resulted in gradual transformation of low-angle subboundaries into high-angle grain boundaries that was assisted by the deformation micro-banding. The development of new ultra-fine grains was considered as a kind of continuous dynamic recrystallization, the kinetics of which was characterised by a sigmoid-type dependence on strain and could be expressed by a modified Johnson–Mehl–Avrami–Kolmogorov equation. ECAP led to significant strengthening of the alloy. The yield strength increased from 105 MPa in the initial state to 390 MPa after 8 ECAP passes. A modified Hall–Petch relationship was applied to analyse the contributions of grain refinement and dislocation density to the overall strengthening. In spite of significant strengthening, the electro-conductivity remained at a level of 80% IACS.  相似文献   

14.
闻鹏  陶钢  任保祥  裴政 《物理学报》2015,64(12):126201-126201
在聚能装药爆炸压缩形成射流的过程中, 伴随着金属药型罩的晶粒细化, 从原始晶粒30-80 μm细化到亚微米甚至纳米量级, 从微观层面研究其细化机理和动态超塑性变形机理具有很重要的科学意义. 采用分子动力学方法模拟了不同晶粒尺寸下纳米多晶铜的单轴拉伸变形行为, 得到了不同晶粒尺寸下的应力-应变曲线, 同时计算了各应力-应变曲线所对应的平均流变应力. 研究发现平均流变应力最大值出现在晶粒尺寸为14.85 nm时. 通过原子构型显示, 给出了典型的位错运动过程和晶界运动过程, 并分析了在不同晶粒尺寸下纳米多晶铜的塑性变形机理. 研究表明: 当晶粒尺寸大于14.85 nm时, 纳米多晶铜的变形机理以位错运动为主; 当晶粒尺寸小于14.85 nm时, 变形机理以晶界运动为主, 变形机理的改变是纳米多晶铜出现软化现象即反常Hall-Petch关系的根本原因. 通过计算结果分析, 建立了晶粒合并和晶界转动相结合的理想变形机理模型, 为研究射流大变形现象提供微观变形机理参考.  相似文献   

15.
Using titanium VT1-0 and VT6 alloys as an example, peculiarities of the effect of plastic deformation by rolling at room temperature on the structure and mechanical properties of metallic materials in submicrocrytalline states are investigated. It is shown that this treatment can result in both hardening and softening of these alloys. It is established that variations in the behavior of their mechanical properties is controlled by the relation between structure parameters such as grain size, uniformity of their size distribution, and volume fraction of fine grains in the course of dicreasing dislocation density.  相似文献   

16.
Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (~0.1 wt.%) for various titanium alloys e.g. Ti–6Al–4V. The deformation behaviour of such an alloy Ti–6Al–4V–0.1B is investigated in the (α?+?β) phase field and compared against that of the base alloy Ti–6Al–4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of α lamellae in near α and softening via globularization of α lamella in near β phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti–6Al–4V–0.1B alloy. The compression texture of both the alloys carry signature of pure α phase defamation at lower temperature and α→β→α phase transformation near the β transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti–6Al–4V–0.1B alloy at comparatively lower temperature.  相似文献   

17.
Three-dimensional dislocation dynamics (DD) fatigue simulations in precipitation hardened metals is a major challenge in terms of numerical development. Several precipitate configurations have been investigated with an original treatment of precipitate–dislocation interactions and a parallelized DD code. In grains containing single-sized shearable particles (r p?=?160?nm), strain is localized in clear bands where the precipitates are totally sheared-off. The fatigue behaviour involves an initial hardening followed by severe cyclic softening and significant surface slip irreversibility. In the presence of large single-sized particles (r p?=?400?nm), the persistent slip band (PSB) structure is accompanied by highly reversible surface displacements. Slip dispersion originates from Orowan loops that have little effect on the mechanical response. The mechanical behaviour of a bimodal distribution is intermediate between the two above cases with the above microstructural features coexisting within the same grain. Unlike in the monomodal large-particle case, where all the particles retain their initial strength, some of the large particles of the bimodal distribution undergo a significant strength reduction.  相似文献   

18.
The stress-strain compressive curves, temperature dependences of the yield stress, and small-inelastic-strain rate spectra of coarse-grained and ultrafine-grained (produced by equal-channel angular pressing) titanium and copper are compared in the temperature range 4.2–300 K. As the temperature decreases, copper undergoes mainly strain hardening and titanium undergoes thermal hardening. The temperature dependences of the yield stress of titanium and copper have specific features which correlate with the behavior of their small-inelastic-strain rate spectra. Under the same loading conditions, the rate of microplastic deformation of ultrafine-grained titanium is lower than that of coarse-grained titanium and the rate peaks shift toward high temperatures. The deformation activation volumes of titanium samples differing in terms of their grain size are (10–35)b 3, where b is the Burgers vector magnitude. The dependences of the yield stress on the grain size at various temperatures are satisfactorily described by the Hall-Petch relation.  相似文献   

19.
ABSTRACT

Molecular dynamics simulations were used to study the atomic mechanisms of deformation of nanocrystalline gold with 2.65–18?nm in grain size to explore the inverse Hall–Petch effect. Based on the mechanical responses, particularly the flow stress and the elastic-to-plastic transition, one can delineate three regimes: mixed (10–18?nm, dislocation activities and grain boundary sliding), inverse Hall-Petch (5–10?nm, grain boundary sliding), and super-soft (below 5?nm). As the grain size decreases, more grain boundaries present in the nanocrystalline solids, which block dislocation activities and facilitate grain boundary sliding. The transition from dislocation activities to grain boundary sliding leads to strengthening-then-softening due to grain size reduction, shown by the flow stress. It was further found that, samples with large grain exhibit pronounced yield, with the stress overshoot decrease as the grain size decreases. Samples with grain sizes smaller than 5?nm exhibit elastic-perfect plastic deformation without any stress overshoot, leading to the super-soft regime. Our simulations show that, during deformation, smaller grains rotate more and grow in size, while larger grains rotate less and shrink in size.  相似文献   

20.
K.S. Ng  A.H.W. Ngan 《哲学杂志》2013,93(33):3013-3026
The deformation of micron-sized single-crystals is jumpy and stochastic, and this may pose potential formability and reliability problems if components for future micro-machines are to be made from small metal volumes. In this work, micron-sized bi-crystal pillars were fabricated by focussed ion-beam milling from grain-boundary regions in coarse-grained polycrystalline aluminium. Each bi-crystal pillar contained a grain boundary intersecting its top surface, and was subjected to compression using a flat-ended nanoindenter tip. Their deformation was found to have smaller strain bursts, fewer periods of strain hardening at elastic-like rates, as well as greater work-hardening rate and flow stress, than single-crystal pillars of similar sizes. Transmission electron microscopy revealed severe dislocation accumulation in the deformed bi-crystal pillars, whereas the residual dislocation density remained low in single-crystal micro-pillars of similar dimensions after deformation to comparable strains. The results suggest that a grain boundary inside a micro-specimen can trap dislocations inside the specimen, leading to a significant rise in the strain-hardening rate as well as to smoother deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号