首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eric Hug  Clément Keller 《哲学杂志》2019,99(11):1297-1326
Size effects regarding Hall–Petch (HP) relation are studied in this work for cobalt, nickel and Fe–3wt.%Si (FeSi), from polycrystalline to multicrystalline states. The materials show a breakdown in HP plot for thickness (t) to grain size (d) ratio less than a critical value. This appears in the beginning of plasticity for cobalt and FeSi whereas a plastic strain threshold must be overcome for nickel. Measurements of the coercive field on strained samples are able to depict such modification for low t/d ratio. Values of the coercive field in the polycrystalline domain allow an estimation of the magnetocrystalline anisotropy energy, related to the grain volume fraction concerned by reversal mechanisms for magnetic domains. Multicrystalline samples of cobalt and FeSi becomes magnetically softer at the yield stress. This is linked to a delay of the maximum intergranular stress towards higher strains for FeSi. For cobalt, non-linear elasticity and strong basal texture modify the magnetoelastic effects in coarse grain samples. For nickel, size effect on the coercive field appears after a few per cent of plastic strain as for HP relationship. A mean internal stress can be captured by magnetic measurements on polycrystals, related to the intragranular part of the kinematic stress. The softening of the magnetic properties for strained nickel multicrystals is due to a competition between the apparition of dislocation cells, which increases the coercive field by mechanisms of magnetic domain wall pinning, and surface softening of multicrystals, which tends to decrease the value of Hc.  相似文献   

2.
Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl3) concentration on quality of extraction process was studied.  相似文献   

3.
Alloys of the composition Al98Fe2 have been prepared by rapid quenching from the melt and mechanical alloying methods and have been studied by Xray diffraction techniques and room temperature 57Fe Mössbauer effect methods. Results may be summarized as follows: The rapidly quenched sample is a single phase supersaturated fcc Al–Fe alloy. Mössbauer effect spectra indicate the presence of a substantially greater degree of Fe clustering than is expected for a random distribution of atoms on the lattice sites. Mechanically alloyed samples have been studied as a function of milling time and show the initial formation of a supersaturated fcc phase with microstructural properties which are quite similar to those of the rapidly quenched sample. Further milling results in the reduction of the average grain size and the formation of an amorphous phase. Mössbauer studies and previously reported phase diagrams suggest that a substantial fraction of the Fe resides in this phase.  相似文献   

4.
Y. Xun  F. A. Mohamed 《哲学杂志》2013,93(24):2767-2785
Creep experiments were conducted on Zn-22%?Al in which SiC particulates were introduced by variable co-deposition of multi-phase materials (VCM). The objective of the investigation is to determine the effect of SiC particulates on the creep behaviour in region I (the low-stress region) and region II (the intermediate-stress or superplastic region) of the sigmoidal plot between stress and strain rate, which was previously reported for the reinforcement-free Zn-22%?Al. The creep data show that the presence of SiC particulates has no effect on the sigmoidal trend between stress and strain rate; and that in region II, the stress exponent, n, and the activation energy for creep, Q, agree well with those reported for SiC-free grades of Zn-22%?Al; n?=?2.5 and Q?~?Q gb, where Q gb is energy for grain boundary diffusion in the alloy. However, the data indicate that the presence of the particulates results in narrowing region II and reducing maximum ductility. An analysis of the creep data reveals the presence of a threshold stress that depends strongly on temperature. The microstructural data inferred from an examination of the crept specimens by the means of transmission electron microscopy (TEM) suggest that the origin of τ 0 may be related to the interaction between moving dislocations and dispersion particles. These particles are introduced in the material as a result of processing the material by thermal spray and deposition.  相似文献   

5.
Thin films of Fe-rich Fe–18 at% Ge and Fe–25 at% Ge were deposited by a pulsed laser ablation technique on single crystal NaCl substrates at room temperature to study phase evolution using transmission electron microscopy. As-deposited films contain nano-scale clusters embedded in a featureless matrix. Quadrupole mass spectrometric observations of the laser-ablated plume show the presence of charged clusters. During in situ heating of the films, the fine-scale clusters grow and profuse crystallization to a bcc FeGe solid solution occurs. For Fe–25?at% Ge thin film, crystallized bcc grains undergo two ordering transitions, viz. bcc?→?B2?→?DO3, during subsequent cooling to room temperature. However, in the case of Fe–18 at% Ge thin film, crystallization leads to formation of the disordered bcc phase. Growth morphologies of the crystals formed during heat treatment indicate faceted growth form, which has been explained by using Jackson's interface model.  相似文献   

6.
7.
The corrosion reaction of four Fe–Mn–Al alloys exposed to a cycling, dry–humid, SO2 (0.001% by volume) polluted atmosphere was studied. ICEMS, XPS, AES-SAM and transmission Mössbauer spectroscopy at different temperatures were employed to characterize the corrosion products. The analytical results indicate that (i) ferrihydrite is the main component of the rust; (ii) there is an abundant presence of Mn2+ and SO3 2–/SO4 2– on the top of the corrosion layer, the concentration of SO4 2– increasing with the number of cycles; and (iii) the magnetic hyperfine pattern exhibited by the series of low-temperature spectra of the rust is quite different from that observed in the rust formed under similar corrosive environments on iron and weathering steel. This latter finding is correlated with a slow rate of transformation of the Fe3+ species formed at the early stages of corrosion into -FeOOH, the usual final product of this type of corrosion processes. The sulphate anions, abundant inside the electrolyte during the wet periods, could be incorporated to the ferrihydrite structure being responsible for the Mössbauer spectral pattern recorded from the corrosion products at low temperatures.  相似文献   

8.
We present the results of an electron microscopy study of defects in plastically deformed single crystals of the intermetallic ξ-(Al–Pd–Mn) phase. Pure edge dislocations with two different Burgers vector directions and four different Burgers vector magnitudes were found. All Burgers vector magnitudes observed can be described in terms of irrational fractions of the unit-cell parameters, and we have observed Burgers vector directions that can be indexed using irrational indices. The stacking faults observed have displacement vectors whose magnitudes and directions are incompatible with the unit cell of the ξ phase. A comparison of the Burgers vectors observed in this study with those reported for the corresponding icosahedral quasicrystal shows that they are equivalent with respect to their directions and lengths. This leads to the conclusion that local order rather than long-range periodic (or quasiperiodic) order governs the structure of defects in these materials.  相似文献   

9.
The structure of the B2 phase has been investigated in Ti–25Al–25Mo alloy using Rietveld refinement of X-ray and neutron diffraction data in as-cast and solution-treated conditions. Different initial structure models have been used for the refinement. The site occupancy of the various chemical constituents in the B2 phase has been calculated and compared with earlier investigations. The relative merits of neutron diffraction over X-ray diffraction for structural refinement of the B2 phase in Ti–25Al–25Mo alloy have been demonstrated.  相似文献   

10.
In the central part of the Fe–Al system between about 58 and 65 at.% Al, a high-temperature phase denoted as ε occurs with a hitherto unknown crystallographic structure. The phase is stable between 1231°C and 1095°C. In order to study the crystallographic structure of the ε phase, in situ high-temperature neutron time-of-flight diffraction experiments have been performed at the HIPPO instrument at the Los Alamos Neutron Science Center (LANSCE). The ε phase was found to have the formula Fe5Al8 with a body-centred cubic structure of the Hume–Rothery Cu5Zn8 type (I $\bar{4}3In the central part of the Fe–Al system between about 58 and 65 at.% Al, a high-temperature phase denoted as ε occurs with a hitherto unknown crystallographic structure. The phase is stable between 1231°C and 1095°C. In order to study the crystallographic structure of the ε phase, in situ high-temperature neutron time-of-flight diffraction experiments have been performed at the HIPPO instrument at the Los Alamos Neutron Science Center (LANSCE). The ε phase was found to have the formula Fe5Al8 with a body-centred cubic structure of the Hume–Rothery Cu5Zn8 type (I[`4]3\bar{4}3m (No. 217), Z=4, cI52) and 52 atoms in the unit cell. Its lattice parameter is a=8.9756(2) ? at 1120°C, which is 3.02 times that of cubic FeAl (B2) at the same temperature. We report here the evolution of the crystallographic parameters over the temperature range between 1080°C and 1120°C.  相似文献   

11.
A system of dipolar excitons at temperatures exceeding the expected Bose–Einstein condensation temperature is considered. It is shown that a first-order phase transition with the formation of a phase close to the crystal of such excitons is possible at such temperatures. The phase diagram in the range of low concentrations and temperatures is constructed. The effect of this transition on the luminescence spectrum of the system is analyzed.  相似文献   

12.
Phase transformations of an electropulsing-treated ZA22 alloy were studied after tensile deformation by using scanning electron microscopy and transmission electron microscopy. It was found that electropulsing tremendously accelerated phase transformations consequentially in the two stages: (a) quenching from supersaturated state approaching the final stable state, i.e., α+εT′+η, and (b) up-quenching from the final stable state to a higher temperature state, i.e., T′+ηα+ε. The mechanism of electropulsing-induced phase transformation is discussed from the point of view of Gibbs free energy, and electropulsing kinetics.  相似文献   

13.
We examine the effects of a phenomenological pseudogap on the T=0 K phase diagram of a high temperature superconductor within a self-consistent model which exhibits a d-wave pairing symmetry. At the mean-field level the presence of a pseudogap in the normal phase of the high temperature superconductor is proved to be essential for the existence of a metallic–like state in the density versus interaction phase diagram. In the small density limit, at high attractive interaction, bosonic–like degrees of freedom are likely to emerge. Our result should be relevant for underdoped high temperature superconductors, where there is a strong evidence for the presence of a pseudogap in the excitation spectrum of the normal state quasiparticles.  相似文献   

14.
A first order structural transformation occurs in the Ni50Mn34In14Fe2 polycrystalline, associated with magnetic entropy changes of 26.5 and 53.6 J/kg K in an applied magnetic field up to 5 and 8 T, respectively. Moreover, the magnetic entropy change with different applied fields maintains its maximum value within a temperature of 3 K. A phase transformation change of 2 K was obtained under 5000 Oe magnetic field, indicating that it is large enough for inducing a reverse martensitic transformation under large magnetic field. All the results mentioned above are favorable for the application of this intelligent intermetallic material.  相似文献   

15.
We report magnetotransport measurements in wide GaAs quantum wells with a tunable density to probe the stability of the fractional quantum Hall effect at a filling factor of ν=5/2 in the vicinity of the crossing between Landau levels (LLs) belonging to the different (symmetric and antisymmetric) electric subbands. When the Fermi energy (E(F)) lies in the excited-state LL of the symmetric subband, the 5/2 quantum Hall state is surprisingly stable and gets even stronger near this crossing, and then suddenly disappears and turns into a metallic state once E(F) moves to the ground-state LL of the antisymmetric subband. The sharpness of this disappearance suggests a first-order transition.  相似文献   

16.
Physics of the Solid State - The atomic structure of Fe–Al (7 and 9 at % Al) and Fe–Ga (18 at % Ga) alloys is studied by X‑ray diffraction using a laboratory four-circle...  相似文献   

17.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

18.
Roland Bonnet 《哲学杂志》2013,93(33):3055-3083
Abstract

The interfacial structure of a lamellar Al(α)-Al2Cu(θ) eutectic obtained by directional solidification is investigated using conventional transmission electron microscopy (TEM) and high-resolution TEM. The average lamellar habit plane is close to (2 3 3)α and lie 10° from the atomically densest planes (1 1 1)α//(2 –1 1)θ. Networks of linear contrasted features are observed along the interfaces, the lines being separated each other’s in a wide range of spacings, typically 6–500 nm. These features are identified as interfacial dislocations with 1/2<1 1 0>α Burgers vectors from image contrast analysis. According to previous works, they are associated with ledge-like defects, the heights of which can reach 3 nm. The high-resolution TEM images do not confirm the presence of atomic terraces parallel to the atomically dense plane (1 1 1)α or the habit plane (2 3 3)α. The interface ensures the quasi-continuity of atomically dense planes, which is a configuration corresponding to the plane-matching model. It is suggested that α/θ interfaces can be considered as semi-coherent but in a particular sense since, according to our analysis, the theoretical length misfits between the fcc and bct lattices are too large to explain the presence of some loose dislocation networks. Their general irregular geometry suggests that these dislocation networks behave like non-equilibrated low-angle grain boundaries superposed on the αθ interfaces.  相似文献   

19.
A new phase with a 10H-type long-period stacking (LPS) structure was found in an Mg75Al10Y15 alloy annealed at 823?K. The LPS structure in the Mg75Al10Y15 alloy annealed at 823?K for 2?h has an ordered arrangement of L12-type structural Al6Y8 clusters on the two-dimensional plane parallel to the c-plane of hexagonal Mg lattice and a disordered arrangement along the c-axis, whereas a perfectly ordered structure along the c-axis, which has a period with two times of that of the 10H-type LPS structure, was established by annealing at 823?K for 24?h. The structural model of the ordered LPS phase is proposed by high-resolution images taken with a Cs-corrected scanning transmission electron microscope and also electron diffraction patterns.  相似文献   

20.
We calculate the dynamic phase transition (DPT) temperatures and present the dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model under the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the mean-field dynamic equation. Then, we study the time variation of the average magnetization to find the phases in the system. We also investigate the behaviour of the dynamic magnetization to characterize the nature (continuous and discontinuous) of transition and to obtain the DPT points. We present the dynamic phase diagrams in two different planes. The phase diagrams include the ferromagnetic-5/2 (f5/2), the ferromagnetic-1/2 (f1/2) and paramagnetic (p) fundamental phases. In addition to these fundamental phases, we find 10 mixed phases, depending on the interaction parameters. The phase diagrams display many special points, such as a dynamic tricritical point, a double critical end point, a triple point and a quadruple point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号