首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal. The introduction of simple M+X salts such as Na+PF6 and K+I into the ionic channel of 1 enhanced the ionic conductivity of the Colh phase of the M+·(1)·X salts, with the highest ionic conductivity reaching ∼10−6 S cm−1 for K+·(1)·I and Na+·(1)·PF6 at 460 K, which was approximately 5 orders of magnitude higher than that of 1. The introduction of non-ferroelectric 1 into the ferroelectric N,N′,N′′-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC) elicited a ferroelectric response from the mixed Colh phase of (3BC)x(1)1−x with x = 0.9 and 0.8. The further doping of M+X into the ferroelectric Colh phase of (3BC)0.9(1)0.1 enhanced the ferroelectric polarisation assisted by ion displacement in the half-filled ionic channel for the vacant dibenzo[18]crown-6 of (3BC)0.9[(M+)0.5·(1)·(X)0.5]0.1.

An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal.  相似文献   

2.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

3.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

4.
The dependence of Th recovery on hydrofluoric acid (HF) concentration in nitric acid (HNO3) solutions (1–5 mol/dm3) containing 1 × 10−6 mol/dm3 of Th and various concentrations of HF and the elution behavior were studied using a commercially available UTEVA (for uranium and tetravalent actinide) resin column. Thorium recovery decreased with an increase in HF concentration in the sample solutions. The concentration of HF at which Th recovery started to decrease was ∼1 × 10−4 mol/dm3 in 1 mol/dm3 HNO3 solution, ∼1 × 10−3 mol/dm3 in 3 mol/dm3 HNO3 solution, and ∼1 × 10−2 mol/dm3 in 5 mol/dm3 HNO3 solution. When Al(NO3)3 (0.2 mol/dm3) or Fe(NO3)3 (0.6 mol/dm3) was added as a masking agent for F to the Th solution containing 1 × 10−1 mol/dm3 HF and 1 mol/dm3 HNO3, Th recovery improved from 1.4 ± 0.3% to 95 ± 5% or 93 ± 3%. Effective extraction of Th using UTEVA resin was achieved by selecting the concentration of HNO3 and/or adding masking agents such as Al(NO3)3 according to the concentration of HF in the sample solution.  相似文献   

5.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

6.
The effect of pressure on the dissociation constant of hydrofluoric acid was determined by using the indicator technique at 25°C at an ionic strength of 0.1m over a pressure range of 1 to 2000 atm. A value of 3.14 for pK a * at I =0 was obtained by extrapolation to zero ionic strength at 1 atm. The pressure dependence yielded a partial molar volume change of –9.6 cm3-mol–1 and a compressibility change of — 35×10–3 cm3-mol–1 –atm–1 for the dissociation. The dependence of ionic strength on the association constant K A * of NaF was studied at 25°C and 1 atm. Extrapolation to I=0 yielded a pK A * of –0.78. The pressure dependence of K A * gave a change of volume of 3.26 cm3-mol–1 and a change in compressibility of 6×10–3 cm3-mol–1-atm–1 for the formation of the ion pair.  相似文献   

7.
Tm3+/Yb3+ codoped rod-like YF3 nanocrystals were synthesized through a facile hydrothermal method. After annealing in an argon atmosphere, the nanocrystals emitted bright blue and intense ultraviolet (UV) light under a 980-nm continuous wave diode laser excitation. Up-conversion emissions centered at ∼291 nm (1I6 → 3H6), ∼347 nm (1I6 → 3F4), ∼362 nm (1D2 → 3H6), ∼452 nm (1D2 → 3F4), ∼476 nm (1G4 → 3H6), ∼642 nm (1G4 → 3F4), and ∼805 nm (3H4 → 3H6) were recorded using a fluorescence spectrophotometer. Especially, enhanced UV emissions were studied by changing Yb3+/Tm3+ doping concentrations, the annealing temperatures, and the excitation power densities. A possible mechanism, energy transfer-cross relaxation-energy transfer (ET-CR-ET), was proposed based on a simple rate-equation model to elucidate the process of the enhanced UV emissions.  相似文献   

8.
By the reaction of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with FeBr3, GaBr3 or FeCl3 in CH3CN/CS2 charge transfer (CT) salts of 1 with counteranions of FeBr4, GaBr4 or FeCl4 (12·FeBr4, 12·GaBr4 and 12·FeCl4) as plate crystals were obtained. Their crystal structures are apparently similar to each other, in which 1 molecules are dimerized in the parallel direction of their molecular long axes, and the dimers are stacked with changing the direction of the molecular long axes alternately to form a one- dimensional column. The counteranions intervene between the 1-stacked columns and are aligned in a zigzag manner. The room-temperature electrical conductivities of 12·FeBr4 and 12·GaBr4 are fairly high (10-15 S cm−1), but a small value (0.8 S cm−1) is obtained for 12·FeCl4. For all CT salts, temperature dependences of electrical conductivity are semiconducting in spite of very small activation energies (30-90 meV). Based on the comparison between their electrical conducting and magnetic properties, it is suggested that the d spins of FeBr4 or FeCl4 ions exert almost no influence on the π conducting electrons in the 1-stacked column.  相似文献   

9.
Rare earth fluoride stability constants for Ce, Eu, Gd, Tb and Yb at 25°C have been determined by examining the influence of fluoride ions on the distribution of rare earths between tributyl phosphate (TBP) and 0.68M NaClO4. Our results indicate that rare earth mono and difluoro complexation constants show a steady increase as a function of atomic number from La to Tb but remain relatively constant after Dy. This behavior is similar to that which has been observed for dicarboxylic acids. Stepwise stability constant ratios, K2/K1, obtained in our work (where K1=[MF2+][M3+]–1[F]–1 and K2=[MF 2 + ]–1[MF2+]–1[F]–1) indicated that, for all rare earths, K2/K1=0.09±0.03.  相似文献   

10.
Recombination rate coefficients of protonated and deuterated ions KrH+, KrD+, XeH+ and XeD+ were measured using Flowing Afterglow with Langmuir Probe (FALP). Helium at 1600 Pa and at temperature 250 K was used as a buffer gas in the experiments. Kr, Xe, H2 and D2 were introduced to a flow tube to form the desired ions. Because of small differences in proton affinities of Kr, D2 and H2 mixtures of ions, KrD+/D3+ and KrH+/H3+ are formed in the afterglow plasma, influencing the plasma decay. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The obtained rate coefficients, αKrD+(250 K) = (0.9 ± 0.3) × 10−8 cm3 s−1 and αXeD+(250 K) = (8 ± 2) × 10−8 cm3 s−1 are compared with αKrH+(250 K) = (2.0 ± 0.6) × 10−8 cm3 s−1 and αXeH+(250 K) = (8 ± 2) × 10−8 cm3 s−1.  相似文献   

11.
A new ion-pair receptor bis(3-bromoindol-2-ylmethyl)(2-pyridylmethyl)amine (1) was synthesized and studied for its anion and cation binding behavior using ESI-MS and 1H NMR spectroscopy. Among halides, 1 exhibits the strongest binding with Cl to form a 1:1 adduct (Ka = 1042 ± 21 in CD3CN). Among alkali metal ions, Li+ and Na+ showed the strongest binding in the formation of a 1·M+ complex. The simultaneous binding of Cl and Li+ to 1 was confirmed by 1H NMR titration of a 1:1 mixture of 1 and Cl with LiPF6 in 83:17 v/v mixture of CDCl3 and DMSO-d6. DFT-optimized structures of 1·Cl, 1·Li+, and 1·Li+·Cl are consistent with the chemical shift changes observed in 1H NMR studies.  相似文献   

12.
Three new coordination polymers with formula [Gd(bta)(H2O)·1.39H2O] n (1), [Dy(bta)(H2O)·1.35H2O] n (2) and [Y(bta)(H2O)2·0.5H2O] n (3) were synthesized by using corresponding rare earth nitrates and 1,3,5-benzenetriacetic acid (H3bta) under hydrothermal/solvothermal reaction conditions, and characterized by single-crystal X-ray diffraction. In these complexes, the carboxylate groups of bta3− adopt different coordination modes, namely one carboxylate group adopts μ211-bridging and each of the other two carboxylate groups adopts μ221-bridging coordination modes in 1 and 2, and one carboxylate group adopts a μ221-bridging coordination mode and each of the other two carboxylate groups adopts a μ211-bridging mode for the major component and one carboxylate group adopts a μ221-bridging coordination mode, one has a μ211-bridging mode and the third has a monodentate mode for the minor component in 3. The magnetic properties of the complexes 1 and 2 were investigated in the temperature range of 1.8–300 K.  相似文献   

13.
The rate of the reaction O2(1Δg + O3 → 2O2(3Σ g) + O(3P) was measured in a static reactor between 296 and 360°K. The decay of O2(1Δg) was determined from the emission of O2(1Σ+g) at 7620 Å. The rate constant is 6.0 × 10−11 exp (−5670/RT) cm3 molecule−1 sec−1. The reaction of O(3P) with ozone is found to produce O2(1Σ+g) with approximately 0.01% efficiency.  相似文献   

14.
Room temperature rate coefficients and product distributions are reported for the reactions initiated in D2O with dications of the alkaline-earth metals Mg, Ca, Sr and Ba. The measurements were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer and electrospray ionization (ESI). Mg2+ reacts with water by a fast electron transfer leading to charge separation with a rate coefficient of 1.4 × 10−9 cm3 molecule−1 s−1. Ca2+ reacts with D2O in a first step to form the adduct Ca2+(D2O), with an effective bimolecular rate coefficient of 2.3 × 10−11 cm3 molecule−1 s−1, which then undergoes rapid charge separation by deuteron transfer to form CaOD+ and D3O+ in a second step with k = 7.9 × 10−10 cm3 molecule−1 s−1. The CaOD+ ion reacts further by clustering up to five more D2O molecules. Sr2+ clusters up to eight D2O molecules and Ba2+ up to seven D2O molecules, with the first addition of D2O being rate determining in each case and the last addition being distinctly slower, as might be expected from a transition in the occupation of the added water molecules from an inner to an outer hydration shell.  相似文献   

15.
This paper described the determination of p-nitroaniline in a double organic substrate oscillating system of tartrate-acetone-Mn2+-KBrO3-H2SO4. Under the optimum conditions, temperature was chosen as a control parameter to design the bifurcation point and proposed a convenient method for determination of p-nitroaniline. Results showed that the system consisting of 3.5 mL 0.06 mol L−1 tartrate, 4.0 mL 0.7 mol L−1 H2SO4, 1.5 mL 1.5×10−4 mol L−1 MnSO4, 4.0 mL 0.4 mol L−1 acetone and 7.0 mL 0.05 mol L−1 KBrO3 was very sensitive to the surrounding at 33.5°C. A good linear relationship between the potential difference and the negative logarithm concentration of p-nitroaniline was obtained to be in the range of 2.50×10−7∼3.75×10−5 mol L−1 with a lower detection limit of 2.50×10−8 mol L−1.   相似文献   

16.
The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3Σg) and O2(a 1Δg) in a selected ion flow tube (SIFT). Only NH2 and CH3O were found to react with O2(X) and both reactions were slow. CH3O reacted by hydride transfer, both with and without electron detachment. NH2 formed both OH, as observed previously, and O2, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6, SF4, SO3 and CO3 were found to react with O2(a 1Δg) with rate constants less than 10−11 cm3 s−1. NH2 reacted rapidly with O2(a 1Δg) by charge transfer. The reactions of HO2 and SO2 proceeded moderately with competition between Penning detachment and charge transfer. SO2 produced a SO4 cluster product in 2% of reactions and HO2 produced O3 in 13% of the reactions. CH3O proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1Δg) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2 and HO2 reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2 studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289–290].  相似文献   

17.
Apparent molar volumes and heat capacities of aqueous GaCl3 have been measured at 25°C in binary GaCl3 solutions up to 3 mol-kg–1, and in ternary GaCl3-HCl solutions, containing 0.1345 mol-kg–1 HCl to suppress hydrolysis, up to a concentration of 1 mol-kg–1 GaCl3. Using the Pitzer interaction model for the excess properties, and using ridge regression for the derivation of physically meaningful regression parameters, the measurements yield the following results for the standard molar properties and Pitzer parameters at 25°C: V0(GaCl3)=12.85 cm3-mol–1; 0 v (GaCl3)=1.10×10–4 kg-mol–1–J–1–cm–3; v 1 (GaCl3)=2.12×10–3 kg–mol–1–J–1–cm3; Cv(GaCl3)=1.34×10–5 kg2–J–1–cm3; Vo(GaOHCl2)=13.84 cm3–mol–1; C o p (GaCl3)=–480.8 J–K–1–mol–1; J 0 (GaCl3)=–8.02×10–6 kg–mol–1–K–2; J 1 (GaCl3)=0.73×10–4 kg–mol–1–K–2; CJ(GaCl3)=–2.52×10–6 kg2-mol–2-K–2; C p 0 (GaOHCl2)=20.4 J-K–1-mol–1. The latter parameter has only mathematical significance, its physical meaning is unclear. Comparison of the present experimental results for the standard molar properties of Ga3+ with semi-empirical correlations casts doubt upon the general validity of these correlation methods for trivalent cations.  相似文献   

18.
Zusammenfassung Das neue Mikrobestimmungsverfahren beruht auf der coulometrischen Titration von S2O3 2– nach vorheriger Abbaureaktion der Polythionate mit Sulfit bzw. Cyanid. Es werden 10 ml Probelösung (S4O6 2–: 5 · 10–5 bis 1 · 10–3 M; S5O6 2–; 2,5 · 10–5 bis 1· 10–3 M; S6O6 2–: 1,66 · 10–5 bis 1 · 10–3 M) benötigt. Die Titrationskurve wird von einem Schreiber registriert. Die Reproduzierbarkeit der jeweiligen Einzelbestimmung liegt bei VK p±0,1 bis ± 1,6%.
Rapid coulometric microdetermination of individual polythionates
The method described is based on the coulometric titration of S2O3 2– after a preceding degradation of the polythionates with sulphite or cyanide. 10 ml of sample solution are required (S4O6 2–: 5× 10–5 to 1×10–3 M; S5O6 2– : 2.5×10–5 to 1×10–3 M; S6O6 2–: 1.66×10–5 to 1×10–3 M). The titration curve is recorded. The reproducibility of a single determination is VK p±0.1 to ± 1.6%.
  相似文献   

19.
Dos Santos LB  Abate G  Masini JC 《Talanta》2005,68(2):165-170
Square wave voltammetry automated by sequential injection analysis was applied to determine the Freundlich adsorption coefficients for the adsorption of atrazine onto a clay rich soil. The detection limit in soil extracts was between 0.18 and 0.48 μmol L−1, depending on the medium used to prepare the extracts (0.010 mol L−1 KCl, CaCl2 or HNO3 and 0.0050 mol L−1 H2SO4), all of them conditioned in 40 mmol L−1 Britton-Robinson buffer at pH 2.0 in presence of 0.25 mol L−1 NaNO3. Also in soil extracts the linear dynamic range was between 1.16 and 18.5 μmol L−1 (0.25-4.0 μg mL−1), with a sampling frequency of 190 h−1. The Kf Freundlich adsorption coefficient was 3.8 ± 0.2 μmol1−1/n Ln kg−1 in medium of 0.010 mol L−1 KCl or CaCl2, but increased to 7.7 ± 0.1 and 9.0 ± 0.3 μmol1−1/n Ln kg−1 in 0.010 mol L−1 HNO3 and 0.0050 mol L−1 H2SO4, respectively. The increase of Kf was related to the decrease of pH from 6.4-6.7 in KCl and CaCl2 to 3.7-4.0 in presence of HNO3 or H2SO4, which favors protonation of atrazine, facilitating electrostatic attractions with negative charges of the clay components of the soil. The 1/n parameters were between 0.76 and 0.86, indicating that the isotherms are not linear, suggesting the occurrence of chemisorption at specific adsorption sites. No statistically significant differences were observed in comparison to the adsorption coefficients obtained by HPLC. The advantage of the proposed SI-SWV method is the great saving of reagent because it does not use organic solvent as in the case of HPLC (50% (v/v) acetonitrile in the mobile phase). Additionally the start up of SI-SWV is immediate (no column conditioning necessary) and the analysis time is only 19 s.  相似文献   

20.
The influence of NaClO4, NaCl and Na2SO4 on the oxidation of Fe(phen) 3 2+ by Ce(IV) was investigated by means of the stopped-flow method. At the concentrations range of NaClO4 and NaCl 0.1–1.0M the rate constant values decrease from 1.03·105 to 0.56·105M–1s–1 and from 1.08·105 to 0.81·105M–1s–1 respectively.In varying concentrations of Na2SO4 solutions (0.05–0.35M) the rate constant values decrease from 1.05·105M–1s–1 to 0.45·105M–1s–1.Taking into account the negative salt effect the mechanism of the reaction progress is proposed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号